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Abstract

Protein–DNA interactions play key roles in determining gene-expression programs during cellular
development and differentiation. Chromatin immunoprecipitation (ChIP) is the most widely used assay
for probing such interactions. With recent advances in sequencing technology, ChIP-Seq, an approach
that combines ChIP and next-generation parallel sequencing is fast becoming the method of choice for
mapping protein–DNA interactions on a genome-wide scale. Here, we briefly review the ChIP-Seq
approach for mapping protein–DNA interactions and describe the use of the SISSRs peak-finder, a
software tool for precise identification of protein–DNA binding sites from sequencing data generated
using ChIP-Seq.
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1. Introduction

DNA-binding proteins are essential for the proper functioning of
several cellular processes such as transcriptional regulation, which
is primarily mediated by interactions between proteins called tran-
scription factors and specific regions on the DNA. These interac-
tions play key roles in determining gene-expression programs
during development, differentiation, proliferation, and lineage-
specification (1–5). Besides regulating transcription, DNA-bind-
ing proteins are essential for DNA replication (6), DNA repair (7),
and chromosomal stability (8). Identification of regions targeted
by such proteins is therefore crucial for a better understanding of
these cellular processes.

Originally developed to investigate protein–DNA binding at a
Drosophila locus (9), chromatin immunoprecipitation (ChIP) has
become the most widely used assay for determining DNA regions
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bound by the protein of interest (POI) in vivo. In this assay,
protein–DNA and protein–protein interactions are first cross-
linked by treating living cells with formaldehyde (Fig. 1a). This
crosslinking step can be omitted in case of proteins such as his-
tones that stably bind DNA. Next, the crosslinked cells are lysed

Fig. 1. ChIP-Seq experiment and data. (a) Steps involved in chromatin immunoprecipitation (ChIP). Proteins are
represented as circles. The antibody used in the immunoprecipitation step is represented as a Y-shaped structure.
(b) Ends of DNA fragments obtained from ChIP are sequenced and aligned back to the reference genome (arrows
represent the sequenced portion of the ChIP DNA fragment). (c) Tags mapped to a genomic region are visualized as a
histogram of tag density. Regions with signal and noise are marked with x and y, respectively.
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and then sonicated – a process in which ultrasonic waves are used
to shear the chromatin into short fragments of desired length
(~0.2–0.5 kb). The sheared chromatin is then immunoprecipi-
tated with a specific antibody against the POI. The antibody may
not necessarily target only direct POI–DNA complexes but also
those complexes where the POI is indirectly bound to the DNA
via its interaction with another protein or protein complex
(Fig. 1a). The immunoprecipitated protein–DNA crosslinks are
reversed, and the DNA is purified for downstream assays designed
to characterize the sequences bound by the POI.

Traditionally, PCR or quantitative/real-time PCR (qPCR)
with primers designed to probe regions of interest are used to
detect and quantify ChIP-derived DNA in relation to a control
input DNA, which is obtained the same way as the ChIP DNA but
without the immunoprecipitation step. AlthoughChIP-qPCR still
remains the gold-standard assay for quantifying specific
protein–DNA interactions, the necessity to design primers for
every region to be probed makes it ill-suited for profiling
protein–DNA interactions on a large scale. ChIP-chip (10), an
approach that combines ChIP with DNA microarrays, was the
most widely used technique for mapping protein–DNA interac-
tions on a global scale until recently (11, 12). Advances in sequenc-
ing technology have enabled millions of short DNA fragments to
be sequenced within a day or two in a cost-effective manner. These
sequences can then be aligned back to the reference genome to
determine the source of origin. This is exploited in ChIP-Seq
(13–17), where ChIP is combined with next-generation massively
parallel sequencing technology to identify DNA regions bound by
the POI. Its superior coverage and resolution have resulted in
ChIP-Seq replacing ChIP-chip as the method of choice. Readers
are referred to ref. 18, 19 for a detailed review on ChIP-Seq.

In ChIP-Seq, ChIP-derived DNA fragments are directly
sequenced on a next-generation sequencing platform. Although
the length of ChIP DNA fragments can range anywhere between a
few hundred and a few thousand nucleotides, sequencing just
~25–75 nucleotides from the ends of the DNA fragments is suffi-
cient to align/map the fragments back to unique locations in the
reference genome (Fig. 1b). Bowtie (20), MAQ (21), and ELAND
from Illumina are popular tools for aligning short sequence reads
back to the reference genome. During the alignment process, reads
thatmap tomultiple locations in the reference genome are discarded
and only those reads that map to unique genomic locations are
retained. Such reads are commonly referred to as tags. Henceforth,
“reads” and “tags” are used interchangeably.

The first step in interpreting a ChIP-Seq dataset involves
identifying regions bound by (or associated with) the POI using
the mapped tags. Hereafter, we will refer to these regions as
binding sites/regions. Regions with higher tag densities
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compared to the background “noise” are typically good binding
site candidates (site x compared to site y in Fig. 1c). In theory, only
the regions bound by the POI are expected to have tags associated
with them since these would be the regions immunoprecipitated
and sequenced (Fig. 1a, b). In practice, however, sequencing
errors can cause some of the incorrectly sequenced reads to get
mapped to regions that were not immunoprecipitated, resulting in
background noise tags at these regions (Fig. 1c; see Note 1).
Noise in the data could also be due to biological reasons, primarily
stemming from antibodies that are not specific to the POI. For
instance, nonspecific antibodies targeting additional proteins can
result in ChIP-derived DNA fragments that bind one of these
proteins and not the POI. Since this type of noise is difficult to
detect postsequencing, pre-ChIP experiments are typically per-
formed to confirm antibody specificity.

Issues outlined above highlight the need for a systematic
approach for the precise identification of binding sites from ChIP-
Seq data. Such an approachmust not only identify regions bound by
the POI but also filter out false-positive regions by evaluating the
test dataset (obtained from ChIP DNA) against a control dataset
obtained from input DNA or IgG ChIP (see Note 2). In this
chapter, we describe a widely used method called SISSRs (22),
a peak-finder that leverages the direction of ChIP-Seq tags (mapped
to sense/antisense strands) to identify binding sites at a high resolu-
tion, typically within few tens of base pairs. We provide a detailed
description of the SISSRs software application tool and instructions
for using it effectively to identify protein–DNA binding sites from
data generated using ChIP-Seq.

2. Methods

2.1. SISSRs Algorithm SISSRs, short for Site Identification from Short Sequence Reads,
is a peak-finder algorithm that uses the direction and density of
mapped ChIP-Seq tags along with the average length (F ) of
sequenced DNA fragments to identify protein–DNA binding
sites (see Note 3; Fig. 2a). If the user does not know the average
fragment length of the ChIP DNA, SISSRs can estimate F from
the tags within the dataset (see ref. 22 for details). SISSRs begins
by scanning regions mapped with sequence tags in the test data
using a sliding window of size w nucleotides with consecutive
windows overlapping by w/2. For a region i spanned by the
sliding window, a measure called “net-tag count” (ci) is computed
by subtracting the number of tags mapped to the antisense strand
of i (antisense tags) from the number of tags mapped to the sense
strand of i (sense tags). As the window slides along, whenever the
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Fig. 2. SISSRs algorithm. (a) Typical distribution of tags mapped to sense and antisense strands of a region ChIP-seq
using an antibody against the protein of interest (POI), and a schematic showing candidate binding site identification
using the direction and density of tags mapped to sense and antisense strands. (b) Illustration of how candidate binding
sites identified from a test dataset are evaluated against the control dataset to determine the true binding sites.
Distribution of fold-enrichment, defined as ratio of the number of tags within a 2F bp long region in the test dataset to
that within the same region in the control dataset, computed for over one million random sites is used to determine the
empirical p-values for candidate binding sites. Only those candidate sites with fold-enrichment value greater than or
equal to the smallest fold threshold Z (with p-value not greater than the user-set threshold) are reported as true binding
sites. For Z ¼ 6, candidate site y with 14.5-fold enrichment will be reported as a true binding site, whereas site x with a
similar ChIP signal but with a smaller fold enrichment over the control (2.3-fold) will not be reported as a true site.
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net-tag count transitions from a positive to a negative value, the
corresponding transition point marked by genomic coordinate t is
recorded as a candidate binding site. Only those candidate bind-
ing sites satisfying the following set of conditions are retained and
designated as true binding sites.

1. Number of sense tags (p) within the F bp region upstream of
t is at least E.

2. Number of antisense tags (n) within the F bp downstream of
t is at least E.

3. The sum of p and n is at leastR, which is estimated based on a
user-defined false discovery rate (FDR) D (when no control
dataset is available) or e-value threshold (when a control
dataset is provided).

4. The fold-enrichment, defined as the ratio of the number of
tags supporting the candidate site in the test data (p + n) to
the number of tags supporting the exact same site in the
control data, is at least Z, which is determined based on an
empirical distribution of fold-enrichment values of at least a
million randomly selected sites and a chosen p-value threshold
(Fig. 2b; see Note 4).

Condition 4 applies only when a control dataset is available to
evaluate the enrichment of tags supporting the binding site in the
test versus the control. When no control dataset is available, the
background tagdistribution ismodeledusing aPoissondistribution.

E is set to 2 by default and can be changed by the user. The
value of R is estimated as follows. The FDR is defined as the ratio
of the number of 2F-bp long regions with Vor more tags that the
background model indicates should occur by chance (eV) to the
number observed in the real data. If no control dataset is available,
R is equal to the smallest V corresponding to FDR < D, other-
wise R is equal to the largest V such that eV < e. The expected
number of tags (l) within a window of length 2F bp is given by 2F
times the number of tags in the dataset divided by the mappable
genome length M (which is roughly 0.8 times the actual genome
length for the human and mouse genomes). The probability of
observing a binding site supported by at least R tags by chance is
given by a sum of Poisson probabilities as 1�PR�1

n¼0 ðe�llnÞ=n!
SISSRs allows users to set their own values for all of the parameters
discussed above. This provides the users the leverage to control
sensitivity, specificity, resolution, and noise subtraction.

Identified binding sites are reported by their chromosomal
coordinates (e.g., chr1:123450–123490). The resolution of each
reported binding site is essentially the distance between the
sense tag immediately upstream of the identified site and the
antisense tag immediately downstream of this site (Fig. 2a; see
Note 5). For additional details on the SISSRs algorithm, the
reader may refer to ref. 22.
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2.2. Identification

of Protein–DNA

Binding Sites Using

SISSRs

This section gives detailed instructions for installing and using
SISSRs on a ChIP-Seq dataset.

2.2.1. Getting and Installing

SISSRs

A perl implementation of the SISSRs peak-finding algorithm is
freely available at refs. 23, 24. Users with Linux operating system
(or most UNIX systems, including Mac OS X) typically have an
installation of perl. Users with other operating systems can down-
load the latest version of perl for free using ref. 25. After down-
loading the SISSRs zipped archive, users should save the extracted
sissrs.pl executable either onto their working directory (to run it
from the working directory) or to a directory containing execu-
tables (to enable execution of sissrs.pl from anywhere within the
home directory).

2.2.2. Preparing the Input

Data Files

SISSRs takes as input data file(s) containing genomic coordinates
of the mapped reads or tags in BED file format (26). In BED file
format, each line contains six tab-separated terms as follows:

The first term denotes the chromosome, and the second and
third terms denote the chromosomal start and end coordinates of
the mapped read, respectively. The sixth term denotes the DNA
strand onto which the read was mapped (+ and – for sense and
antisense strand, respectively). The fourth and the fifth terms are
not used by SISSRs.

2.2.3. Running SISSRs Typing the name of the executable (sissrs.pl or ./sissrs.pl or perl
sissrsl.pl) on the command line displays the help menu. A simple
execution of the SISSRs application on a ChIP-Seq dataset (with-
out a control dataset) requires three parameters outlined below
with optional parameters discussed next.

-i The name of the input file containing the mapped tags in BED
file format.

-o The name of the file onto which the output from SISSRs will be
stored.
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-s Size or length of the reference genome (number of bases/
nucleotides) onto which the sequenced reads were mapped.
For example, 3080436051 for the human genome (hg18
assembly). If analyzing data for a specific chromosome (or a
set of chromosomes), then this would be the length of that
chromosome (or sum of the lengths of those chromosomes).

If a control dataset is available, option -b, described below,
should be used (see Note 2). Various other options available on
SISSRs application are listed below. Some of these parameters are
preset to default values, which the users can reset to their desired
values. Users are recommended to set the -a option, which con-
trols false positives due to amplification or sequencing biases.

-a Setting this option allows only one read per genomic coordinate
to be retained even if multiple reads align to the same coordi-
nate, thus effectively minimizing the effects of sequencing
and/or PCR amplification bias. During PCR amplification,
certain DNA fragments may be amplified into several orders
of magnitude in a biased fashion, which after sequencing and
mapping will show up as regions enriched with inordinate
number of tags. To avoid calling these pseudo-enriched
regions as binding sites, we strongly recommend using this
option when running SISSRs.

-F Average length of the DNA fragments from ChIP. Typically,
DNA fragments of certain length are size-selected for
sequencing. Set F to this length (integer), if it is known. The
individual performing the ChIP experiment and size-selection
usually has a good estimate of the average length of sequenced
DNA fragments. If this information is not available, this
parameter can be left unset in which case SISSRs estimates
this measure from the tags in the dataset (also check option -L
below; see ref. 22 for details on length estimation).
Default: estimated from tags.

-D FDR if random background model based on Poisson prob-
abilities needs to be used as control. This parameter is relevant
only when a control data (e.g., input DNA or nonspecific IgG
control) is not provided using the -b option.
Default: 0.001.

-b The name of the file containing the control data (e.g., input
DNA or nonspecific IgG control; see Note 2). This file should
be in the BED format. The tags in this file are used as a negative
control. Subheading 2.2 contains a detailed description of how
SISSRs uses the control data to minimize the number of false
positives. Users may use -e and -p options (see below) to set
the e-value and p-value thresholds to control sensitivity and
specificity, respectively. If no control data is available, SISSRs
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uses a random background model based on Poisson probabil-
ities (in which case, use option -D to set the FDR).

-e e-Value threshold. It is the expected number of enriched
regions (based on Poisson probabilities) in a similar-sized
dataset. The value entered for this parameter is used to esti-
mate the minimum number of reads (R) necessary to identify
candidate binding sites. This option controls sensitivity (the -
p option explained below controls specificity), and is ignored
if -b option is not used (no control data).
Default: 10.

-p p-Value threshold. For a given F value (average DNA fragment
length), the fold/ChIP enrichment for a candidate binding
site is the ratio of the number of tags supporting the site,
which is p + n (Fig. 2a), to the number of tags supporting the
same site in the control dataset. This fold enrichment is nor-
malized with respect to the number of tags in both the test
and the control datasets. To assess the statistical significance of
the observed fold enrichment (the probability that the
observed fold enrichment is by chance), an empirical distribu-
tion of fold enrichments from at least one million random
sites, spanning the set of all chromosomes in the test dataset, is
used to estimate the p-value for each candidate binding site.
Only those sites with p-values not over the p-value threshold
are reported as true binding sites. This option controls speci-
ficity (the -e option explained above controls sensitivity), and
is ignored if -b option is not used (no control data).
Default: 0.001.

-m Fraction of genome (0.0–1.0) mappable by reads. Typically,
not all sequenced reads map to unique genomic locations.
Portions of the genome containing repetitive elements,
which account for roughly 20% of the genome, are not map-
pable. The value entered for this parameter is used to estimate
Poisson probabilities.
Default: 0.8.

-w Size of the scanning window (must be an even number >1),
which is one of the parameters that attempts to control for
noise in the data. The scanning window slides so that there is a
50% overlap between two consecutive window positions. As a
result, the resolution of the identified binding sites (t in
Fig. 2a) is w/2. For example, for w ¼ 20, each binding site
in the output file (with default -c option) will have a starting
and ending coordinate with 1 and 0 in the Units position,
respectively (e.g., 1234561–1234620). A larger window size
reduces the influence of nonspecific reads and thus false posi-
tives at the cost of resolution. A smaller window size provides
for increased resolution but may increase the number of false
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positives if the data is noisy (contains a high number of
nonspecific reads). In other words, smaller window size
makes for higher sensitivity possibly at the cost of lower
specificity, and larger window size makes for higher specificity
possibly at the cost of lower sensitivity. The amount of back-
ground noise in the data is an important factor one needs to
consider before setting a value for -w.
Default: 20.

-EThreshold for the number of tagsmappedwithin F bp upstream
or downstream of the center of the inferred binding site (t in
Fig. 2a). This is one of the parameters that controls for speci-
ficity to a small degree. The higher the E, the more specific
(and slightly less sensitive) SISSRs will be, and vice versa.
Default: 2 (assuming that the data file contains ~5–10 million
reads; the user may consider increasing this value if the total
number of reads is much larger).

-L Upper-bound on the DNA fragment length. It is the approxi-
mate length/size of the longest DNA fragment that was
sequenced. This value is one of the critical parameters used
during the estimation of average DNA fragment length.
The individual who performed the ChIP and size-selection of
the DNA fragments before sequencing should have a good
estimate on of the upper-bound for the DNA fragment length.
Default: 500 (assuming that DNA fragments of length
<500 bp were size-selected).

-q The name of the file containing genomic regions in simple
three-column tab-separated format (chr start-coordinate
end-coordinate). Reads falling within these regions will not
be considered for the analysis.

-t If this option is set, each binding site is reported as a single
genomic coordinate representing the center of the inferred
binding site (t in Fig. 2a). If this option is not selected, SISSRs
uses the -c option (see below).

-r If this option is set, SISSRs, instead of reporting each binding
site as a single genomic coordinate (representing the center
t of the inferred binding site; e.g., chr1 12345), each binding
site is reported as anX-bp binding region, whereX represents
the resolution of the identified site (Fig. 2a). X varies for each
binding site depending upon the availability of tags support-
ing the site. If this option is not selected, SISSRs uses the -c
option as default (see below).

-c This option is same as the -r option, except that it reports
binding sites that are clustered within F-bp of each other as
a single binding region by merging those sites. As a result, the
number of binding sites reported using this option could be
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typically fewer than that reported using the -r option. For
each binding region reported in the output file, the entry in
the “NumTags” column indicates the number of tags sup-
porting the strongest binding site in the reported binding
region. The -c option is the recommended option especially
if w is set to smaller values (ten or less).

Default: This is the default option, which SISSRs is used to
report binding sites.

-u If this option is set, SISSRs also reports binding sites supported
only by reads mapped to either sense or antisense strand. This
option will recover binding sites whose sense or antisense
reads were not mapped for some reason, e.g., the actual
binding site lies right next to a repetitive region in which
case reads aligning to the repetitive side were not mapped
because they also align to other region(s) in the genome (see
ref. 22 for details).

-x If this option is set, the summary and the progress report are
not displayed on the terminal during the execution of the
application.

2.3. Examples Example 1: A simple example with no control dataset:
./sissrs.pl -i ctcf.bed -s 3080436051 -o ctcf.sissrs
SISSRs identify binding sites based on the reads in the test data file
ctcf.bed. Since no control data file was provided (�b option), the
default background model based on Poisson probabilities and the
default FDR (0.001) will be used to determine statistically significant
number of tags (R in Fig. 2) necessary to identify binding sites. SISSRs
automatically use the default values for other parameters.

Example 2: Using the -a option, which considers only one read per
genomic position:
./sissrs.pl -i ctcf.bed -s 3080436051 -o ctcf.sissrs -a
This is same as Example 1, except that only one read per genomic
position is kept even if multiple reads get mapped to the same gnomic
position.

Example 3: Using a control dataset:
./sissrs.pl -i ctcf.bed -s 3080436051 -o ctcf.sissrs -b control.bed -a
This is same as Example 2, except that a background control file is
used as negative control (replacing the default random model based
on Poisson probabilities). Default values are used for other parameters
including the -e and -p parameters, which assume the default values 10
and 0.001, respectively.

Example 4: Ignoring reads that fall within certain genomic regions:
./sissrs.pl -i ctcf.bed -s 3080436051 -o ctcf.sissrs -b control.bed -a -q
repeatsFile.txt
This is same as Example 3, except that the input reads that fall within
the genome regions listed in the repeatsFile.txt will be ignored during
the analysis. Effectively, this may reduce the number of binding sites
reported compared to that reported in the case of Example 3.
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Example 5: General run with no control data (relevant options listed
using separate square brackets []):
./sissrs.pl -i ctcf.bed -s 3080436051 -o ctcf.sissrs [�a] [�F 200]
[�D 0.001] [�m 0.8] [�w 20] [�E 2] [�L 500] [�q repeatsFile.
txt] [�t]/[�r]/[�c] [�u] [�x]

Example 6: General run with a control dataset (relevant options listed
using separate square brackets []):
./sissrs.pl -i ctcf.bed -s 3080436051 -o ctcf.sissrs [�a] [�F 200]
[�b bg.bed] [�e 10] [�p 0.001] [�m 0.8] [�w 20] [�E 2]
[�L 500] [�q repeatsFile.txt] [�t]/[�r]/[�c] [�u] [�x]

2.4. SISSRs Output,

Interpretation, and

Downstream Analyses

The results from a SISSRs run are stored under the file name that
was provided by the user with the -o parameter. This output file
contains the summary of the test and control datasets, the list of
command line and estimated parameters which SISSRs used to
process the data, and the list of binding sites identified using the
statistical thresholds chosen by the user. A typical SISSRs output is
shown in Fig. 3. Each identified binding site is listed as a genomic
region along with the number of tags supporting that site. If a
background control data was used, fold enrichment over the
control data along with a p-value accompanies each reported site.

The first term denotes the chromosome on which the binding
site resides. The second and the third terms denote the chromo-
somal start and end coordinates of the binding site, respectively.
The fourth term “NumTags” denotes the number of tags sup-
porting the identified binding site, which is equal to p + n in
Fig. 2a. The fifth and the sixth terms “Fold” and “p-value,”
respectively, are reported only if a background control data was
used. Fold denotes fold-enrichment, which is the ratio of Num-
Tags to the number of tags supporting the exact same site in the
background control data (see Note 6). While computing the fold
enrichment, the number of tags supporting the binding site in the
test and control data is normalized by the total number of tags in
the test and control data. The p-value denotes the probability that
one would expect to see this fold-enrichment between the test and
the control data just by chance, which is computed based on the
empirical distribution of fold-enrichment values for one million or
more random sites (Fig. 2b). Only those binding sites with fold-
enrichment p-value less than or equal to the p-value threshold (set
by the user using the -p option) are reported in the results file.

Typical downstream analyses of SISSRs-reported binding sites
include de novo motif analysis to identify the consensus sequence
within the identified binding sites/regions. De novo motif analy-
sis is an unbiased search for a consensus sequence motif present
within the identified binding sites (Fig. 4; see Note 7). Software
tools such as PRIORITY (27), MEME (28), and GADEM (29)
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can be used to identify the consensus sequence, if any, present
within identified sites (see Note 8). If the DNA binding prefer-
ence for the POI is known, then the identified consensus sequence
is expected to match the known binding sequence. Otherwise, the
user needs to investigate at least two possible scenarios with regard

Fig. 3. A typical SISSRs output file.
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to the novel consensus sequence: (a) the consensus sequence
could characterize an undiscovered novel binding preference of
the POI or (b) the POI binds DNA indirectly via another protein,
in which case the identified consensus sequence would correspond
to the binding preference of that protein.

Other analyses include determining the genomic distribution
of identified binding sites in relation to genomic landmarks, and
defining a list of genes targeted by the protein being profiled. For
a given reference genome and a set of gene annotations, custom
software can be written to determine the fraction of identified
binding sites that fall within intronic/exonic regions, promoter
regions (defined as a few kilo-bases upstream and/or downstream
of transcription start sites of known genes), and other genomic
landmarks of interest. Given that a binding site may or may not be
functional, defining target genes based on the set of identified
binding sites alone is not straightforward. But, in practice, genes
that contain one of more identified binding sites within a few kilo-
bases upstream or downstream of their transcription start sites are
defined as targets of protein being profiled.

Fig. 4. De novo motif analysis for discovering consensus sequence motif within the identified binding sites.
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2.5. SISSRs Running

Time

SISSRs running time primarily depends on whether or not a
background control data is being used. When no background
control data is used, the running time is typically few minutes.
Most of this time is spent reading the data files. In general, it takes
~5 min for SISSRs to analyze a test dataset containing approxi-
mately ten million reads with default settings and no background
control data. If a background control data is used, then SISSRs
could take anywhere between ~10 and 30 min for a p-value
threshold of 0.001, with the additional time spent sampling one
million random sites to determine the empirical p-value distribu-
tion. Setting the p-value to smaller values will further increase the
running time. Thus, it is recommended that the p-value is not set
to extremely small values if running time is of primary concern
(see Note 9).

3. Notes

1. A high noise-to-signal ratio raises a red flag on the sequencing
quality, and it is a good practice to avoid datasets where signal
and noise cannot be easily distinguished.

2. Many nucleosome-free (open chromatin) regions in the
genome can bind proteins in a nonspecific manner and certain
genomic regions are prone to biased amplification/sequenc-
ing. These biases in the test dataset can be neutralized to some
extent by using a control dataset, which will help reduce the
number of nonspecific binding sites inferred as true binding
sites. Input DNA and IgG ChIP-derived DNA are the two
commonly used controls. Input DNA is prepared the same
way as the ChIP DNA without the immunoprecipitation step.
IgG ChIP is performed with an antibody against IgG, which
binds DNA in a nonspecific manner. If antibody specificity
against the POI is not a concern, input DNA serves as a better
control for amplification and sequencing bias compared to
IgG ChIP DNA. Although not necessary, we strongly recom-
mend using a control data when using SISSRs.

3. SISSRs was designed to identify protein–DNA interaction
sites from ChIP-Seq datasets and is not suitable for analyzing
histone modification data to identify regions enriched with a
specific histone modification. ChIP-Seq data characterizing
histone modifications in general have much broader foot-
prints of signal of varying lengths (anywhere from few hun-
dred to several thousand bases) compared to that for
protein–DNA interaction sites, which is typically ~200
nucleotides (13). Distinguishing broader footprints of signal
from the background noise requires accurate characterization

20 ChIP-Seq Data Analysis: Identification of Protein–DNA. . . 319



of boundaries demarcating signal and noise, a task that
requires sequencing of the ChIP sample to near saturation.
Since samples are rarely sequenced to near saturation, identi-
fication of regions with broad footprints of signal (e.g., his-
tone modifications H3K4me1, H3K9me3, H3K27me3, and
H3K26me3 (13)) is a relatively difficult task compared to
protein–DNA binding sites. We do not recommend SISSRs
for analyzing histone modification data in general, but it may
be used to analyze histone modification data such as
H3K4me3 or H3K9ac (that have ~200–500 bp footprints)
with caution.

4. The statistics used to determine Z is highly dependent on how
well saturated the control data is. If the control data does not
contain sufficient reads (much less than what may be neces-
sary), then using such a dataset as a control is as good as using
no control. Thus, it is important to make sure that the control
data contains sufficient number of reads. As a rule of thumb,
for a genome of length L nucleotides and the average frag-
ment length of F nucleotides, it is desirable that the control
dataset contains at least about L/F tags to make reliable
inferences.

5. The resolution of the reported binding site is dependent on
the number of tags in the dataset. The larger the dataset
(more tags), the higher the likelihood of identifying sites
with better resolution. Typically, the average resolution of
the reported sites is somewhere between 40 and 80 bp, but
it could be as much as the length of the average ChIP frag-
ment.

6. The value for ChIP fold-enrichment (when a control is used)
or number of tags (when a control is not used) is a good
indicator of protein–DNA binding affinity/stability (22).
When comparing two or more binding sites, higher (lower)
values for these measures can be interpreted as stronger
(weaker) binding.

7. If one wishes to performmotif analysis on the DNA sequences
corresponding to the reported binding sites, we recommend
using the 200 nucleotide sequence centered on the reported
binding site. Although the ~5–20 bp DNA sequence bound
by a protein is highly likely to be present within the region
reported as the binding site, it is quite possible that all or part
of this binding sequence is just outside of the reported bind-
ing site. And, since the resolution of the reported sites are
dependent on the tags that map near these sites, some of
which could be noise, there is always a chance that a reported
coordinate defining a binding site could be off by a few base
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pairs. It is therefore good practice to consider using a 200
nucleotide sequence centered on the reported binding site.

8. Since ChIP using an antibody against POI captures genomic
regions bound directly as well as indirectly by POI (Fig. 4),
one cannot expect all of the reported binding sites for POI to
contain the consensus binding sequence/motif. Thus, a lack
of consensus sequence at a site cannot be interpreted as that
site being a false-positive.

9. If running time is of concern, do not set the p-value (�p) to a
number less than 0.0001 (0.001 is the default).
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