A 5/4-approximation algorithm for minimum 2-edge-connectivity*

Raja Jothi

Abstract

A 5/4-approximation algorithm is presented for the
minimum cardinality 2-edge-connected spanning sub-
graph problem in undirected graphs. This improves
the previous best approximation ratio of 4/3. It is
shown that our ratio is tight with respect to current
lower bounds, and any further improvement is possi-
ble only if new lower bounds are discovered.

1 Introduction

A network design problem which requires the under-
lying network to be resilient to link failures is known
as the Edge Connectivity Survivable Network Design
Problem (EC-SNDP). 2-edge-connectivity (2EC) is a
major feature in today’s fast and reliable communi-
cation networks as single transmission failure could
cause intolerable losses. 2-edge connectivity between
any two terminals in a network is needed to guarantee
network connectivity in case of a main transmission
link failure. A graph is said to be 2-edge-connected
if the deletion of any single edge does not disconnect
it. In other words, a link failure continues to allow
communication between functioning sites.

Most network optimization problems that require
finding minimal subgraphs satisfying given connectiv-
ity constraints are NP-hard. Hence, it has become
imperative to design approximation algorithms for
such problems. The problem of finding a minimum
cardinality 2-edge-connected spanning subgraph of a
given undirected graph is known to be NP-hard and
MAXSNP-hard [4, 6]. In this paper, we present a 5/4-
approximation algorithm for the 2-edge-connected
spanning subgraph problem in undirected graphs.

1.1 Problem Statement. The input is an ar-
bitrary, undirected, 2-edge-connected graph G =
(V,E). On such a graph, the 2-edge-connectivity
problem (2-ECSS) is to find a minimum cardinal-
ity subset of edges H C FE such that the graph

~ *Research supported by the National Science Foundation
under grant CCR-9820902.

fDepartment of Computer Science, The University of Texas
at Dallas, Richardson, TX 75080. E-mail: {raja, rbk,
sxv010010}Q@utdallas.edu.

Balaji Raghavachari

Subramanian Varadarajan'

G = (V,H) is 2-edge-connected. The problem is
known to be NP-hard [10, 14]. In this paper we
present an approximation algorithm for the problem
that achieves a ratio of 5/4. Throughout this paper,
“2-connectivity” refers to 2-edge-connectivity.

1.2 Previous results. In their ground-breaking
paper, Khuller and Vishkin [16] demonstrated a
3/2-approximation algorithm for 2-ECSS. They also
presented an algorithm for the analogous vertex
connectivity problem, 2-VCSS, whose approximation
ratio is 5/3. Their algorithms used a depth-first
search (DFS) tree of the graph as a starting point and
added carefully chosen back edges that cross bridges
and cut vertices. Developing on this work further,
Garg, Santosh and Singla [11] gave an improved
algorithm for 2-VCSS whose performance ratio is
3/2. Cheriyan, Seb6 and Szigeti [1] improved the
approximation ratio to 17/12 for 2-ECSS using an
ear decomposition of the graph in which the number
of odd-length ears is maximal.

Vempala and Vetta [19] designed new algorithms
for both 2-ECSS and 2-VCSS with 4/3 approximation
ratio. The following key concepts introduced by them
have paved the way to design better algorithms. They
introduced the novel concept of a beta-structure to
avoid hard configurations. They also preprocessed
the graphs to remove cut vertices and adjacent degree
two nodes. In addition, they used a solution to
the “D2 problem” (minimal subgraph in which each
vertex is incident to at least two edges) as the starting
point instead of a DFS tree. Recently, Krysta and
Kumar [17] improved the ratio for 2-ECSS to about
1.3326 by employing a smart charging scheme.

1.3 Our contributions. We describe an im-
proved approximation algorithm for 2-ECSS with an
approximation ratio of 5/4. There are examples to
show that the analysis of our algorithm is tight. In
addition, one of the examples in [11] shows that im-
proving beyond our algorithm requires new lower
bounding techniques. We combine key ideas from
Vempala and Vetta [19] and Krysta and Kumar [17],
and introduce new ideas to obtain the 5/4 bound.

1.4 Other related work. Hartvigsen [12, 13] has
presented polynomial-time algorithms for finding 3-
cycle-free maximal 2-matchings in general graphs,
and 4-cycle (square) free maximal 2-matchings in bi-
partite graphs. The problem of finding a minimum-
weight k-edge-connected spanning subgraph (k-
ECSS) is known to be NP-hard [10]. Khuller and
Vishkin [16] obtained a 2-approximation algorithm
for weighted k-ECSS for k£ > 1.

Nagamochi and Ibaraki [18] gave an efficient al-
gorithm for finding a sparse k-connected subgraph
of a given graph. Khuller and Raghavachari [15]
demonstrated an algorithm for k-ECSS with approx-
imation ratio of 1.85 and an algorithm for k-VCSS
with a performance ratio of 2 + }7— in graphs satis-
fying the triangle inequality. Fernandes [6] improved
the approximation ratio to 1.75 for k-ECSS. Cheriyan
and Thurimella [3] presented an elegant algorithm
(which we call the CT algorithm) that achieves a per-
formance ratio of 1 + ﬁ for unweighted k-ECSS.
They also presented an algorithm for the unweighted
k-vertex-connectivity problem (k-VCSS) with 1+ 1
as the approximation ratio. Cheriyan, Vempala and
Vetta [2] presented an algorithm for weighted k-
VCSS with approximation ratio O(log k) (as long as
V> 6k2).

Gabow [8] has given a 3/2 approximation algo-
rithm for 3-ECSS. This matches the ratio obtained
by the CT algorithm, but Gabow’s algorithm works
on multigraphs as well, whereas the CT algorithm
guarantees a ratio of 3/2 for 3-ECSS only on simple
graphs. In fact Gabow [9] shows examples of multi-
graphs for which the ratio obtained by the CT algo-
rithm is arbitrarily close to 2. In that paper he also
shows how to modify an earlier algorithm of [15] for
k-ECSS to multigraphs with a performance ratio of
about 1.61.

2 Definitions

Let G = (V, E) be the given graph with |V| = n. Let
Opt be an optimal 2-ECSS of (G. We will also use Opt
to denote the cardinality of an optimal 2-ECSS of GG,
and this should cause no confusion. A node v is called
a beta vertez if the removal of some two nodes x and y
from G (along with their incident edges) results in at
least three connected components with one of them
containing just v. This definition extends easily to
the concept of a beta pair. A subgraph H = (V, E')
with E' C E is called D2 if the degree of each node is
at least 2. A 2-matching is a subgraph, all of whose
nodes have degree 2 or less. It is easily shown that the
minimal D2 and the maximal 2-matching problems
are closely related, and a solution for one can be

easily converted into a solution for the other. Both
problems are solved using algorithms for matching.

Vempala and Vetta [19] showed that there is
no loss of generality in assuming that G has no
cut, vertices, beta vertices or pairs, and adjacent
degree-2 nodes. We will use their preprocessing steps
and apply our algorithm only on such preprocessed
graphs. In addition, as suggested by them, we will
start with a minimal 3-cycle-free D2, or equivalently,
a maximal 3-cycle-free 2-matching. It is easy to
convert any minimal D2 into a maximal 2-matching
by deleting all but two edges at every node whose
degree is more than 2, and a similar transformation
in the other direction is also possible.

3 Overview of the algorithm

We will assume that the graph G has already been
preprocessed to ensure that it has no cut-vertices,
beta nodes and pairs, and adjacent degree-2 nodes
(see [19] for more details). We then use Hartvigsen’s
algorithm [12] to find, in polynomial time, a maximal
3-cycle-free 2-matching (maximal subgraph without
3-cycles, in which each vertex is incident to at most
two edges). Let the 2-matching that we obtain be a
collection of cycles C' and a set of paths P.

PROPOSITION 3.1. Let G = (V, E) be a graph defined
on n > 4 vertices, with no cut vertices. There exists
an optimal 2-ECSS of G that has no 3-cycles.

Proof. The following procedure can be used to re-
move any 3-cycles from an optimal 2-ECSS (Opt)
without increasing its cardinality. Suppose it has a
3-cycle zyzx. Since all edges of Opt must be critical,
the removal of the 3 edges of this 3-cycle must break
up Opt into three connected components, with ex-
actly one of {z,y,z} in each component. Otherwise,
if for example, x and y are in the same component,
we can find 3 paths between x and y, and therefore
the edge (z,y) is redundant, contradicting the min-
imality of Opt. Since the graph has no cut vertices,
there must be an edge e in G that connects the com-
ponent containing z to one of the other components,
say y’s component. In this case, adding e and remov-
ing (z,y) gives an optimal 2-ECSS of G that has one
fewer 3-cycle than Opt. |

PRrROPOSITION 3.2. Let G = (V, E) be a graph defined
on n > 4 vertices, with no cut vertices. Let H be a
mazximal 3-cycle-free 2-matching of G, consisting of
a collection of cycles C and a set of paths P. Let Opt
be the cardinality of an optimal 2-ECSS of G. Then
Opt > n + |P|.

Proof. A simple counting argument shows that |H| =
n — |P|. Since H is maximal and n is fixed, P is
minimal for a 3-cycle-free 2-matching.

Proposition 3.1 showed that G has an optimal 2-
ECSS that does not have any 3-cycles. Consider an
ear decomposition of such an optimal solution. Let e
be the number of its ears. Therefore Opt = n+e—1.
Since it is a minimal solution, it has no trivial ears
(with just one edge). Deleting the first and last edge
of each ear gives us a 2-matching with 1 cycle and
e — 1 paths. Since we started with a 3-cycle-free
optimal solution, we get a 3-cycle-free 2-matching.
As observed earlier, the number of paths is minimal
in H and therefore, |P| < e — 1. Therefore, Opt =
n+e—1>n+|P|. |

3.1 Charging strategy. Since our goal is to get
an algorithm whose ratio is 5/4, we can use up to
2(n +|P|) edges. We split this into two parts. Each
vertex is given a charge of 5/4, called its wertex
charge. Each path in P is also given a charge
of 5/4, called its path charge. As the algorithm
builds a solution, it has to pay for the edges through
a combination of vertex and path charges. Our
charging strategy has been adopted from the work
of Krysta and Kumar [17].

With C and P on hand, we build a DFS tree of
G using the following strategy. When the first node
z1 of a cycle X € C, where X = {z1,z9,...,2¢},
is discovered, we will make the DFS go through the
nodes of the cycle in sequence until it reaches the end
of the cycle. Upon reaching a leaf node, we take the
subgraph induced by the last 7 nodes and see if there
is a different way of traversing them such that the
new leaf vertex is adjacent to an unvisited vertex. If
such a reorganization is possible, we do so, and the
DFS is able to continue further. Later we will show
that we need to look for specific configurations, and
hence this search for a path in the 7-node induced
subgraph can be done efficiently.

When a path Y € P is encountered by DFS; it
is not, necessary that the initial node encountered be
an end vertex of the path. We use the following idea
from [17] to handle paths, with a minor modification.
If DFS enters Y at one of its end vertices, then it goes
through the vertices of the path in that sequence.
That segment of the DFS tree inherits the 5/4 path
charge of Y. On the other hand, if a node in the
middle of Y is encountered, we have the option of
going in either direction to one of the ends of the
path. The DFS chooses to search the segment of
Y that is longer, and allocate the 5/4 path charge
to the smaller, unexplored segment, which is called

the residual segment of Y. Inductively, there is one
residual segment Y’ C Y that may still be unexplored
with a path charge of 5/4. One exception to this
method is when the DFS reaches the middle of a
residual path of 8 nodes, and the longer segment has
5 nodes. In this case alone, we go the other way,
expanding the DFS tree by 4 nodes and leaving a
residual segment of 4 nodes. Whenever we consume
a path segment of 5 nodes in the DFS tree, we assign
that segment a path charge of 1/4.

When a residual segment gets small, we partition
the available path charge to both segments to ensure
the following. Each segment of three nodes or five
nodes is allocated a path charge of 1/4, two nodes
a charge of 1/2 and a singleton node a charge of
3/4. These path charges will be used to account for
edges when a branch of the DFS tree has fewer than 4
nodes. The reason behind allocating a charge of 1/4
to path segments of 5 nodes will be discussed later.
Since the 2-matching solution that we used has no 3
cycles, branches with fewer than 4 nodes can only be
path segments.

ProprosiTiON 3.3. The scheme described above dis-
tributes path charges as follows: 5-node and 3-node
segments of a path receive at least 1/4 each, 2-node
segments receive at least 1/2 each, and I1-node seg-
ments receive at least 3/4 each.

We break the DFS tree into a sequence of paths
in a natural way. The first path starts at the root and
goes down to the first leaf encountered. Every time
the DFS finds an unvisited vertex and starts a new
search, we start building a new path that extends up
to the first leaf node encountered by it. Let these DFS
paths be Dy, D,, ..., D,. We will process the paths
one at a time and 2-connect each path by adding
carefully chosen back edges. Selected edges of the
paths will be dropped in some cases. We will show
that we can 2-connect each path using the vertex
charge of 5/4 received by each vertex plus any path
charge it may have been allocated.

3.2 Additional operations. In general, our
strategy is to try to construct large cycles starting
at a leaf. Some configurations are difficult to han-
dle and we introduce additional operations that will
enable our algorithm to avoid these difficult cases.
Cycle shrinking: During the course of the
algorithm, we may find a cycle C' of 5 or more edges
for which we are able to prove that Opt uses at least
|C| — 1 edges within the subgraph induced by C. In
such cases, we shrink the cycle C' into a single node
and solve the resulting problem recursively, and then

add C to its output. It is easy to show that this
scheme works as long as |C] > 5 [19]. We call this
operation as SHRINK(C'). We extend it to shrinking
a larger 2-connected subgraph of G as follows. Let S
be a set of 11 nodes that can be 2-connected using 12
edges (using 2 ears). If we can prove that any 2-ECSS
of G contains at least 10 edges within the subgraph
induced by S, then we can apply the above shrinking
strategy to S and recursively solve the problem and
still manage to get a 5/4 approximation ratio.

LEMMA 3.1. Let G = (V, E) be a 2-edge-connected
graph that has neither cut vertices nor beta vertices
and pairs. Suppose there is a subset C C V' of nodes
for which it is possible to prove that any 2-ECSS of
G contains at least |C| — 1 edges within the induced
subgraph of C, and |C| > 5. Suppose there exists
a subgraph that 2-connects the nodes of C using at
most |C| + {WTJ'J edges.
and solve the 2-ECSS problem and still achieve an
approzimation ratio of 5/4.

Then we can shrink C

Proof. Suppose we take an optimal 2-ECSS, Opt, and
shrink C into a single node, then we get a 2-connected
graph that has |V| — |C| + 1 nodes and at most
Opt —|C|+1 edges. Suppose we find a 2-ECSS of the
shrunken graph using a 5/4 approximation algorithm.
The solution returned has at most 2(Opt — |C| + 1)
edges. We now expand the nodes of C' and add
the subgraph that 2-connects C to it. We get a 2-
connected subgraph of GG that has at most

|C|—5J

Z(opt—|0|+1)+\0\+{ .

edges, which is at most %Opt. |

Donation: In certain cases, when we are pro-
cessing a path D, if one of its nodes, v, has a child ¢
in the DFS tree outside D, i.e., ¢ would be the root
of a path Dy for some k > i, (see Figure 1(a)), we
may 2-connect all nodes of D except v. The path
D;, will be extended to include v (see Figure 1(b)),
and in this case, we say that D donates v to Dy. If
it so happens that Dy is a path of 4 nodes, then we
would have to provide an extra charge of 1/4 to Dy,
since we assumed that all 5-node path segments have
a path charge of 1/4 available, unless it came from a
5-cycle. We will show that when D donates a single
vertex v, it has excess charge available, and therefore
gives to Dy a charge of 1/4 from its excess.

Plunder: Consider an edge (u,v) € C, where C
is a cycle that we are currently constructing from the
leaf node of a path D. Suppose u has an unprocessed
descendant d that is part of a path Dy # D, such

)
o)
>

N e
NS
S

N e
<
[

Figure 1: Donation and plundering

that there is some back edge (d,v) (see Figure 1(c)).
In this case, we can replace the edge (u,v) by a path
from u to v through d (see Figure 1(d)). We refer
to this operation as a plunder. During a plunder, we
account for the vertex charges in the following way.
We can show that if Dj, either has at most 4 nodes or
is a 5-node cycle, then all its vertices are plundered.
Otherwise, we guarantee that at least 4 nodes are
plundered from Dj. If p nodes are plundered from
Dy, by u, they have a vertex charge of 5p/4 available,
out of which u keeps p + 1/2 and returns the rest to
Dy, as path charge allocated to Dy by the plunderer.
This allows enough charge to 2-connect the left over
nodes in Dy. Note that in case Dy originally had 5
nodes, and only one node is left after the plunder,
then it still has a vertex charge of 5/4, an already
available path charge of 1/4, and a path charge of
3/4 left by the plunderer, which together accounts for
2 edges that will be needed to 2-connect this single
node to the core. Also, D has gained a charge of 1/2,
which is the equivalent of having two extra nodes in
it. For nodes of any other D, in the path from u
to Dy, we ensure that the effective path length of D,
stays the same. For each node that u takes away from
D,, it takes away only 1 out of the 5/4 vertex charge
available and it leaves behind a path charge of 1/4 to
D,.

Due to this accounting method, after plundering,
the effective length of C' is equal to the number of
nodes in it from D plus two corresponding to the
1/2 it gained from Dj. In addition, paths which
lost nodes due to a plunder have extra quarters to
compensate their loss, and therefore, when we 2-
connect them, we can act as if they still have their
original length.

3.3 More details. We first start by 2-connecting
Dy, the first path in the DFS tree. We will try
to build an ear decomposition of the nodes of D1,

starting from the leaf. Once the ear decomposition
reaches the root vertex, all but the donated vertices
of Dy are two-connected, which we will call as the
“core”. We then proceed iteratively as follows. Out
of the remaining paths, we select the path D whose
head is visited earliest by DFS and 2-connect their
nodes to the core using the same ideas. Note that
the paths may be processed in a order different than
D, ..., D}, since donations and plunders affect the
order in which the paths are considered. Since there
are no cross edges with respect to a DFS tree, we are
able to 2-connect them one path at a time. At the end
of the sequence, we get a solution that is 2-connected
and, in fact, we compute an ear decomposition of the
solution in which most ears contain at least 4 new
nodes. There may be a few smaller ears generated by
residual segments with three or fewer nodes, and we
account for their edges by combining vertex charges
and path charges. Since the paths D are generated
by DFS, non-tree edges of G are all back edges.

We will show the following through a sequence of
lemmas:

e Lemma 4.1 shows how to find a 5-cycle starting
at the leaf of a given path D.

e Lemma 4.3 shows how to extend it to a 6-cycle.

e Lemma 4.5 shows how to extend it to a 7-cycle,
donating nodes in some cases.

In all cases, if the path does not have enough nodes,
then we will find a single cycle that includes all nodes.
If certain configurations arise, then we will find a
cycle C' in which Opt must use at least |C] — 1 edges
within C, or a 11 node set which can be 2-connected
using 12 edges within which Opt must use at least 10
edges. In these situations, we shrink the nodes into
a single vertex and solve the problem recursively.

We now describe how our algorithm 2-connects
a DFS path D to the core. The behavior of our
algorithm depends on the effective length of the path,
which is the original number of vertices in it plus any
vertices that may have been donated to it. Recall
that when a path gets plundered and loses vertices,
it gets to keep a 1/4 for each vertex that it loses,
effectively maintaining the same length.

|D| < 3: Paths with less than 4 vertices are either
path segments or paths that lost vertices in a plunder,
since we don’t have 3-cycles in our initial 2-matching
that guides the DFS. As mentioned in our charging
strategy, when |D| < 3, then D has a path charge
of (4 —|D|)/D. We are able to 2-connect D using a
single ear which can be paid using vertex and path
charges.

|D| = 4 or 5: A single ear that extends from the
core through all the vertices of D is constructed. The
edges are paid using the vertex charges of D.

ID| = 6 or 7: A single ear that extends from
the core through all the vertices of D is constructed.
One of the vertices may be donated in this step. The
edges are paid using the vertex charges of the vertices
of D in the single ear. If such an ear cannot be
constructed, we show that we can call SHRINK(D).
The proof for cases |D| = 6 or 7 is similar to the
proof of Lemma 4.5 and is not included due to lack
of space.

|ID| = 8: First we find a cycle of length at least
5 starting at the leaf node. We then shrink this cycle
into a single vertex, and find a single ear (containing
at most 5 edges) starting at the core that includes all
the nodes. Together at most 2 ears are used, and the
edges can be paid using vertex charges.

ID| =9 or 10: Find a cycle of length at least 6
starting at the leaf. Shrink the cycle and connect the
remaining nodes to the core using a single ear.

ID| = 11: Find a cycle of length at least 6
starting at the leaf. Try to extend the cycle using
methods of Lemma 4.5. If successful, shrink cycle
and 2-connect the nodes using another ear. In some
of the cases, we will donate up to 3 nodes to other
paths, thus shrinking the length of D. We can then
2-connect the remaining nodes using one of the earlier
cases. Otherwise we will show that any 2-ECSS has
at least 10 edges in the subgraph induced by D and
therefore call SHRINK(D).

|ID| = 12: It is easy to extend the method used
for |D| = 8 to any multiple of 4 by 2-connecting D
using |D|/4 ears as follows. Find a 5-cycle from the
leaf, shrink and recurse.

|ID| > 12: We find a cycle with 6 or more edges
from the leaf, shrink it into a single node and repeat
the process two more times. If there are any nodes
left in D, find a cycle of length 5 or more, until all
nodes of D (except donated nodes) are 2-connected
to the core.

4 Growing a cycle from the leaf

We now state and prove several interesting and useful
claims. In the following, when we say a back edge
crosses a node v, we mean that there is a back edge
in GG that connects a proper descendant of v to a
proper ancestor of v. A node z crosses (an ancestor)
v if either there is a back edge (z,y) crossing v or if
there is a back edge (d, y) that crosses v, where d is a
descendant of z through a child ¢ not in the current
path D. In such cases, if (z,y) ¢ F, then we will add
a virtual edge (z,y) when we seek to grow a cycle.

Once we have identified the set of ears with which
we 2-connect the nodes of v; to the core, we replace
all the virtual edges by plundering the corresponding
tree path from z to d and the back edge (d,y). Since
d is a descendant of = through a child ¢ that is not
in D, the paths added to replace the virtual edges
are all disjoint from each other. Therefore, in the
following discussion, we will treat virtual edges the
same as the real edges of G. Hence we will assume
that if x crosses v, then there is a back edge (x,y)
that crosses v. In addition, we will treat the core as
an extra vertex (labeled as v, below) that is added to
the end of the path, but the core does not have any
charges available to pay for any edges.

4.1 Finding a 5-cycle

LEMMA 4.1. Let D be a DFS path whose vertices are
labeled v1,vs, ...,v, starting from the leaf vertex. It
is possible to find a cycle that includes all vertices in
{v1,v9,..., 0} for some k > min(q,5). The cycle
may include plundered segments from the heads of
unprocessed paths.

Proof. We show that a cycle of five or more vertices
can be formed based on one of the following cases.
Observe that vy is a leaf vertex in the DFS tree and
therefore has no children. The only edges from v
other than the tree edge (v1,vs) are back edges.
Case 1: The farthest back edge from vertex vy is
(v1,vg), 4 < k < q. Form the cycle v; ... vgv;.

Vg, Vg,
Us Vs
on U3 V4
M V9 m V9

(a) (b)
Figure 2: Lemma 4.1: Case 2

Case 2: The farthest back edge from wvertex vy
is (v1,v4). In order that vertex w4 is not a cut
vertex, either vy or wz (or both) must cross wy.
If vg crosses vq with edge (vs,vg), then form the
cycle vivaugvg ... v4v1 (see Figure 2 (a)). Otherwise
if only vy crosses vy, then the edge (vy,v3) must
exist, since without it, the removal of vy, and vy
generates three components — {vs,...,v,}, {vs},
and {vi}, which makes v; and vs beta vertices.
Observe that w3 cannot have a child ¢ other than
V9, since in that case we would then have continued

the DFS as w4, v1,v9,v3,¢,... instead of accepting
v1 as a leaf vertex. Hence, we can form the cycle
V109V . .. v4v3V1 (see Figure 2 (b)).

Uy Vi

U5 Us

Uy

U1 Vo 0 U2

(@ (b)
Figure 3: Lemma 4.1: Case 3

Case 3: The farthest back edge from wvertex vy
is (v1,v3). As in the previous case, v must cross
vg, since otherwise v3 would be a cut vertex. If the
farthest back edge from v, lands on v; with j > 4,
then form the cycle vivav; ... v3v1 (see Figure 3 (a)).
Otherwise, if the farthest back edge from vy only
reaches vy, then vy threatens to be a cut vertex. The
only possibility is that v3 must cross v, with a back
edge that lands on vy, k& > 4. In this case, we form
the cycle vivavy ... vv3v1 (see Figure 3 (b)). [|

The above lemma can be extended to the case
when vertex »; is not a single node of G, but a 2-
connected component that has been shrunk into a
single node. Since the algorithm works by repeatedly
finding a cycle starting from the leaf and shrinking
it into a single node, it is necessary to prove an
extended version of Lemma 4.1. The proof is more
complicated we can no longer use the fact that certain
nodes cannot have neighbors outside the current path
because the algorithm reorients the last few nodes of
a path if that allows it to be extended further. We
are able to prove the lemma by introducing donations
and plunders in carefully selected places. There are
many different cases to consider, and we omit the
proof here due to lack of space.

LeMMA 4.2. Let D be a DFS path labeled as in
the previous lemma, vyi,...,v,. The leaf node vy
represents a 2-conmected component formed by a set
of ears starting at the original leaf of D, and v,
is the core. We can find a cycle that includes all
vertices in {vy,va,...,vr} for some k > min(q,5).
At most one vertex is donated, and the cycle may
include plundered segments from the heads of paths
considered after D.

4.2 Finding a 6-cycle. We now show that the
operations in Lemma 4.1 can be continued further
to find a cycle of length 6 or more.

LeMMA 4.3. Let D be a DFS path containing at least
7 nodes, labeled as in the previous lemma. It is either
possible to find a 5-cycle C' on which we can call
SHRINK (C') or to find a cycle that includes all vertices
in {v1,va,...,u1} for some k > 6. As before, the
cycle may include plundered segments from the heads
of paths considered after D.

Proof. By Lemma 4.1, we can find a cycle through
vertices v; to vs. If this cycle also includes vertex
vg, we are done. Otherwise, we show how to extend
the cycle further based on one of the following cases.
We consider a case only if all the previous cases have
failed.

To prevent, vs from being a cut vertex, at least
one of the vertices {vy,v2,v3,v4} must cross vs. In
all cases below, let the back edge that crosses v; land
on vg, k > 5.

Case 1: vy and/or vy can cross vs. In this case,
we expand the cycle by taking either vy ...vgv; or
V10V20V3V4VE ... V507,

Vg Uk
Vg

Vs

U

Vg U3 V9 U3
Figure 4: Lemma 4.3: Case 2

Case 2: edge (vi,v4) exists. Either vy or vg
crosses vs. In this case, we expand cycle by taking
either V1V4UV3V2VE ... U5U1 O V1UV3VE ... U504V (see
Figure 4).

Case 3: (vi,v4) ¢ E. Neither v; nor vy can
have any children outside the current path D, since
otherwise, the path would have been extended to
include that vertex by reorienting the path, making
v or vy as the last vertex of the path, making it
further extensible by DFS. Therefore, since (v1,v4) is
not an edge, any 2-connected solution must have at
least 4 edges incident to {vy,vs} and all these edges
are only within C' = {vy,vs,v3,v4,v5}. In other
words, there are at least 4 edges within C in any
optimal solution. Therefore we can shrink C' into a
single node and recurse by calling SHRINK(C) (with
5/4 as the target ratio). |

We now state the extended version of the above
lemma. It is similar to Lemma 4.2. In some
situations, we shrink a set of vertices in which we
are able to prove that any 2-ECSS must include at

least |C] — 1 edges. Up to three edges are donated in
the process of finding a cycle.

LemMA 4.4. Let D be a DFS path labeled as in
the previous lemma, vy,...,v,. The leaf node vy
represents a 2-conmected component formed by a set
of ears starting at the original leaf of D, and v, is
the core. It is either possible to find a set of nodes C
on which we can call SHRINK (C') or to find a cycle
that includes all vertices in {vy,va,... v} for some
k > min(q,6). At most three vertices are donated,
and the cycle may include plundered segments from
the heads of paths considered after D.

4.3 Finding a 7-cycle. We now consider the case
when |D| = 11. Combining the vertex charges of
all these nodes gives us a total of 13 3/4. Therefore
in order to get a ratio of 5/4, we need to try to 2-
connect D to the core (which can be viewed as a
12th vertex) using at most 13 edges, i.e., using at
most 2 ears. We will show how to process D such
that we will either 2-connect D to the core using at
most 2 ears, or find a way to donate at least one node,
and up to three nodes, to unprocessed paths so that
the remaining nodes of D can be 2-connected to the
core easily using up to two ears, or show that we can
shrink D by proving that any 2-ECSS must contain
at least 10 edges in the induced subgraph of D.

LemMA 4.5. Let D be a DFS path containing 11
nodes, labeled vy, ... ,v11,v12, where vi2 is the core.
It is possible to do at least one of the following:

e 2-connect D to the core using 3 ears if it has a
path charge of 1/4 or more available.

e 2-connect D to the core using at most 2 ears,
donating at most 3 nodes to other paths that are
still unprocessed by the algorithm.

e Find a set of nodes C' such that C' satisfies the
conditions stated in Lemma 3.1.

As before, the cycle may include plundered segments
from the heads of paths considered after D.

Proof. By Lemma 4.3, we can find a cycle through
vertices v to vg. If this cycle also includes vertex
v7, we are done. Otherwise, we show how to extend
the cycle further based on one of the following cases.
We consider a case only if all the previous cases have
failed. Note that if we succeed in extending the cycle
to be of length 7 or more, then we can 2-connect D
by shrinking the 7-cycle into a single node and then
finding a cycle through the six or fewer remaining
nodes (including the core).

To prevent vg from being a cut vertex, at least
one of the vertices {vy,vs,v3,v4,v5} must cross vg.
In all cases below, let the back edge that crosses vg
land on vy, k > min(q,7), and let it be a back edge
that goes farthest up the tree.

Case 1: vy and/or vs can cross vg. The cycle is
extended to either vy ...vpv1 Or V1 ... V5V ... VgV

Vi [

(A V7 S

Vs Vg

M

Figure 5: Lemma 4.5: Case 2

Case 2: vy or vs can cross vg and (vy,vs) € E.
The cycle is extended to either vyvsv v3v20 . .. VgV
Or V1 U2V3V4V . .. VUV (see Figure 5).

Case 3: only vs crosses vg and (vi,vs) € E.
Observe that nodes vy and v4 can have no children in
the DFS tree, because for example, if v, had a child ¢,
then the algorithm would have reordered the current
path to be v, ..., vg, 01,05, v4, 03,02 s0 that the DFS
can be further extended to ¢ from vy. Therefore the
nodes {v1,va,v4,v5} have no edges that go out of
the hexagon, and therefore there are at least 5 edges
incident to them in any feasible solution to 2-ECSS.
Hence, we can shrink the hexagon H = {vy,...,vg}
in this case and call SHRINK(H).

Case 4: only vy crosses vg and (v1,vs) € E.

Nodes v; and ws; have no neighbors outside the
hexagon H = {vy,...,vs} as explained in ear-
lier cases. If (v1,v4) € E, then expand cycle to

V1V9V3V . .. VeUsV4v1 (see Figure 6 (a)). If (vy,v5) €
E, then expand cycle to vjvav5v4030 ... vg01 (see
Figure 6 (b)). If (v3,v5) € E, then we could have
reordered the path as v, ..., vs, V1,02, 03,05, 04, and
therefore v, has no neighbors outside the current
path. Therefore in this case, any 2-ECSS must have
at least 5 edges incident to {v1,v4,v5}, and hence we
call SHRINK(H).

We have considered all possible neighbors for vs.
If v is a degree-2 node, then v4 does not have a child
c other than vz, because, since v, is not a cut vertex,
there must be a back edge from a descendant of ¢ that
goes farther than vs. The back edge cannot land on
vs because vs has no neighbors outside H, nor can
the back edge land on any vertex beyond wvg, since
in this case vy crosses vg. Therefore any back edges
can only land on vg and this makes vs a beta vertex

Ug U3 (% U3

Figure 6: Lemma 4.5: Case 4

on the removal of vy and vg (the third component is
the subtree with ¢ as the root). If vy has no child
other than vy, then we can call SHRINK(H), since
there must be at least 5 edges incident to {vy,vs, v5}
in any 2-ECSS.

In the only remaining possibility, let ¢ be a child
of vy outside H. By arguing that the graph has
no cut vertices as in Case 3 above, at least one of
the following cycles exists; if needed, v and vy are
donated to c.

e Replace (v2,v3) by plundering c.

® U5V4V3Vy . .. VgU7VgVs (see Figure 6 (c)).
® UsU4U3Vs . .. U, U7V6V5 (see Figure 6 (d)).
® U5ULU3UTVS . .. U U6U5 (see Figure 6 (e)).
® U5V4U3V7Yy . .. UgUGU5 (see Figure 6 (f)).
e Call SHRINK(H).

Case 5: only vy crosses vg. If vs has no other
neighbors in G, it will be a beta vertex. As noted
earlier, v5 cannot have any children other than wvy.

Vi
(A
m
Vg
U2 Vs

Figure 7: Lemma 4.5: Case 5

Therefore at least one of the edges (v1,vs), (va2,vs),
or (v3,vs) must exist. Edge (v1,vs) is covered under
Case 2. If (v3,vs5) exists, then we expand the cycle
t0 v1VaV3VsV4VE . .. vgv1 (see Figure 7). The only
case left to consider is when edge (ve,vs) exists.
In this case vz has no neighbors outside the path
because the algorithm would rearrange the path
as Vg, -..,V6,01,V2,05,04,03 and extend the path
further. Hence there are at least 5 edges incident
to {v1,vs,v5} in any 2-ECSS, and therefore we call
SHRINK(H).

Case 6: only vy crosses vg. This case is symmet-
ric to Case 5 above.

Case 7: At least two consecutive nodes in the set
{va,v3,v4} have back edges that cross vg. We will
discuss the case when we have back edges (v, v,,) and
(v3,v,). The other cases will be handled similarly. If
w = 12 (i.e., vo has a back edge to the core), then
we can 2-connect D using 2 ears: v120s010g ... V12
followed by vsv3vavsvg. The case z = 12 is similar.

For the rest of this case, we assume that any
back edge from {vs,v3,v4} lands within the path
vr...v11. If there is a back edge from vy to vy,
then we expand the cycle to v1vov7 . .. V,V3V4V5V6V .
Also, if vz has a back edge to the core, we can 2-
connect D using 2 ears: viov7vgv9v10v11v12 followed
by v, U201 V6V5V4V30,. Also, if (v7,v11) € E, then also
we can 2-connect D with 2 ears either by expanding
the 6-cycle as in the previous case by replacing
(va,v3) by wav,, ...v,v3 and then connecting the
remaining nodes with another ear, or by finding a
first ear that starts at the core and includes all nodes
of the 6-cycle and then connect the remaining nodes
using a second ear.

If any of the vertices {va,vs,v4, V7, Viy—1,Vs—1}
has a child outside D, then we can donate up to
3 nodes and 2-connect the remaining nodes using 2
ears. For example, if v3 has a child ¢, then we donate
{v3,v4,v5} to ¢ and use the cycle vivav,, ... V501 as
the first cycle and we can 2-connect the 8 remaining
nodes in the path using at most two ears.

If three or more nodes in w7,...wv1; have back

edges to the core, then we can 2-connect D using two
ears. On the other hand, if at most two nodes of D
are connected to the core, and the other nodes do not
have any neighbors outside D, then any 2-ECSS of G
has at least 10 edges within the subgraph induced by
D, and we can shrink D into a single vertex (and we
can 2-connect D using at most 11 edges).

Uy Uy 9
[
V7 Ur ¢
Vs Vg Us
v
) 1
NV v

(%) V3 V9 U3

(a) (b)

Figure 8: Lemma 4.5: Case 8

Case 8: only vy and vy cross vg. Let the
farthest back edge with which vy crosses vg land
on v,, and the corresponding back edge for v,
land on wv,. If edge (vi,v3) exists, then expand
cycle to vivav,, ...vgusvsvzvy (see Figure 8 (a)).
If edge (vs,vs) exists, the expand the cycle to
V1VU3V5V4V; . . . VU1 (see Figure 8 (b)). The case
when edge (v1,v5) exists was already considered in
Case 2. If {v1,v3,v5} form an independent set, with
none of the vertices connected to a node outside the
hexagon, then all 6 edges of the hexagon are needed
in any 2-ECSS solution, and therefore we can shrink
the hexagon and we call SHRINK(H). The only case
left is when node w3 has a neighbor outside H. This
can happen when there is a back edge from a descen-
dant of v, that has a back edge to vs. In this case,
we replace (va,v3) by a path using the plunder oper-
ation. On the other hand, if v3 has a child ¢ outside
H, then we donate either {v3,v4, v5} or {vs, v, v1} to
¢ depending on whether w < z or not, and 2-connect
the remaining nodes using two ears. |

5 Summary

In summary, our algorithm uses a 3-cycle-free maxi-
mal 2-matching to select a suitable depth-first search
tree of the graph. The DFS tree is broken into a col-
lection of paths and we 2-connect the paths one at
a time. We account for edges by a charging method
where we try to pay using vertex charges whenever
possible and show that when we need extra, then
path charges are available to cover the deficit. We
introduced new operations of donation and plunder-
ing to handle some inconvenient configurations. For a

graph, the algorithm either shrinks a subset of nodes
C' (by calling SHRINK(C)) when we are able to prove
that at least |C| — 1 edges are necessary within C
in any 2-ECSS, or finds a solution that uses at most
2(n + |P]). A more precise statement of when we
apply SHRINK(C) is stated in Lemma 3.1.

THEOREM 5.1. Given a 2-edge-connected, undirected
graph G = (V, E), there is a polynomial-time algo-
rithm that returns a 2-ECSS of G that is within 5/4
of an optimal 2-ECSS.

Instead of using a 3-cycle-free 2-matching, if an
arbitrary maximal 2-matching is used, then it can be
shown that the performance ratio of our algorithm is
at most 21/16 = 1.3125.

6 Vertex connectivity

Recently, we have identified how to extend our algo-
rithm to 2-VCSS. There are several issues to solve.
First, we need to show how SHRINK(C) is handled
for vertex connectivity. Also, we shrink cycles when
they get large enough during the course of the al-
gorithm. It needs to be shown that edges can be
carefully chosen such that the resulting graph is 2-
vertex-connected. In fact, in certain examples, extra
edges need to be added when we expand C' after call-
ing SHRINK(C'), and in these cases we are able to
show that Opt is also bigger. Also, when we select
edges incident to the core, we need to ensure that
both edges that 2-connect a path D are not incident
to the same vertex of the core (i.e., we need to get
an open ear decomposition). More details of the fol-
lowing theorem will be provided in the full version of
the paper to be made available soon.

THEOREM 6.1. Given a 2-vertez-connected, undi-
rected graph G = (V, E), there is a polynomial-time
algorithm that returns a 2-VCSS of G that is within

5/4 of an optimal 2-VCSS.

References

[1] J. Cheriyan, A. Sebd, Z. Szigeti, Improving on the
1.5 approzimation of a smallest 2-edge connected
spanning subgraph, SIAM J. Discret. Math., 14,
pp- 170-180, 2001.

[2] J. Cheriyan, S. Vempala and A. Vetta, Approzima-
tion algorithms for minimum-cost k-connected sub-
graphs, Proc. of the 34th ACM Symposium on the
Theory of Computing (STOC), 2002.

[3] J. Cheriyan and R. Thurimella, Approzimating
minimum-size k-connected spanning subgraphs via
Matching, STAM J. Comput., 30, pp. 528-560, 2000.

[4] A. Czumaj and A. Lingas, On approzimability of the
minimum-cost k-connected spanning subgraph prob-
lem, Proc. 10th Annual ACM-SIAM Symposium on
Discret. Alg. (SODA), pp. 281-290, 1999.

[5] J. Edmonds, Matroid intersection, Annals of Dis-
cret. Math., 14, pp. 39-49, 1979.

[6] C. G. Fernandes, A better approzimation for the
minimum k-edge-connected spanning subgraph prob-
lem, J. Algorithms, 28, pp. 105-124, 1998.

[7] A. Frank and E. Tardos, An application of sub-
modular flows, Linear Algebra and its Applications,
114/115, pp. 320-348, 1989.

[8] H. N. Gabow, An ear decomposition approach to
approzimating the smallest 3-edge connected span-
ning subgraph of a multigraph, Proc. 13th Annual
ACM-STAM Symp. on Discret. Algorithms (SODA),
pp. 84-93, 2002.

[9] H. N. Gabow, Better performance bounds for finding
the smallest k-edge connected spanning subgraph
of a multigraph, Proc. 14th Annual ACM-SIAM
Symp. on Discret. Algorithms (SODA), 2003.

[10] M. R. Garey and D. S. Johnson, Computers
and intractability: A guide to the theory of NP-
completeness, W. H. Freeman, San Francisco, 1979.

[11] N. Garg, V. Santosh and A. Singla, Improved ap-
prozimation algorithms for biconnected subgraphs
via better lower bounding techniques, Proc. 4th An-
nual ACM-STAM Symp. on Discret. Algorithms
(SODA), pp. 103-111, 1993.

[12] D. Hartvigsen, Eztensions of matching theory, Ph.D.
Thesis, Carnegie-Mellon University, 1984.

[13] D. Hartvigsen, The square-free 2-factor problem in
bipartite graphs, Proc. of the 7th Integer Program-
ming and Combinatorial Optimization Conference
(IPCO), pp. 234-241, 1999.

[14] A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter,
Hamilton paths in grid graphs, STAM J. Comput.,
pp 676-686, 1982.

[15] S. Khuller and B. Raghavachari, Improved approz-
imation algorithms for uniform connectivity prob-
lems, J. Algorithms, 21, pp. 433-450, 1996.

[16] S. Khuller and U. Vishkin, Biconnectivity approz-
imations and graph carvings, J. Assoc. Comput.
Mach., 41, pp. 214-235, 1994.

[17] P. Krysta and V. S. Anil Kumar, Approzimation al-
gorithms for minimum size 2-connectivity problems,
Proc. 18th Intl. Symposium on Theoretical Aspects
of Computer Science (STACS), pp. 431-442, 2001.

(18] H. Nagamochi and T. Ibaraki. Linear time al-
gorithms for finding sparse k-connected spanning
subgraph of a k-connected graph, Algorithmica, 7,
pp. 583-596, 1992.

[19] S. Vempala and A. Vetta, Factor 4/3 approzi-
mations for minimum 2-connected subgraphs, AP-
PROX 2000, pp. 262-273, 2000.

