
A 5/4-approximation algorithm for minimum 2-edge-
onne
tivity�Raja Jothi Balaji Raghava
hari Subramanian VaradarajanyAbstra
tA 5/4-approximation algorithm is presented for theminimum 
ardinality 2-edge-
onne
ted spanning sub-graph problem in undire
ted graphs. This improvesthe previous best approximation ratio of 4/3. It isshown that our ratio is tight with respe
t to 
urrentlower bounds, and any further improvement is possi-ble only if new lower bounds are dis
overed.1 Introdu
tionA network design problem whi
h requires the under-lying network to be resilient to link failures is knownas the Edge Conne
tivity Survivable Network DesignProblem (EC-SNDP). 2-edge-
onne
tivity (2EC) is amajor feature in today's fast and reliable 
ommuni-
ation networks as single transmission failure 
ould
ause intolerable losses. 2-edge 
onne
tivity betweenany two terminals in a network is needed to guaranteenetwork 
onne
tivity in 
ase of a main transmissionlink failure. A graph is said to be 2-edge-
onne
tedif the deletion of any single edge does not dis
onne
tit. In other words, a link failure 
ontinues to allow
ommuni
ation between fun
tioning sites.Most network optimization problems that require�nding minimal subgraphs satisfying given 
onne
tiv-ity 
onstraints are NP-hard. Hen
e, it has be
omeimperative to design approximation algorithms forsu
h problems. The problem of �nding a minimum
ardinality 2-edge-
onne
ted spanning subgraph of agiven undire
ted graph is known to be NP-hard andMAXSNP-hard [4, 6℄. In this paper, we present a 5/4-approximation algorithm for the 2-edge-
onne
tedspanning subgraph problem in undire
ted graphs.1.1 Problem Statement. The input is an ar-bitrary, undire
ted, 2-edge-
onne
ted graph G =(V;E). On su
h a graph, the 2-edge-
onne
tivityproblem (2-ECSS) is to �nd a minimum 
ardinal-ity subset of edges H � E su
h that the graph�Resear
h supported by the National S
ien
e Foundationunder grant CCR-9820902.yDepartment of Computer S
ien
e, The University of Texasat Dallas, Ri
hardson, TX 75080. E-mail: fraja, rbk,sxv010010g�utdallas.edu.

G = (V;H) is 2-edge-
onne
ted. The problem isknown to be NP-hard [10, 14℄. In this paper wepresent an approximation algorithm for the problemthat a
hieves a ratio of 5/4. Throughout this paper,\2-
onne
tivity" refers to 2-edge-
onne
tivity.1.2 Previous results. In their ground-breakingpaper, Khuller and Vishkin [16℄ demonstrated a3/2-approximation algorithm for 2-ECSS. They alsopresented an algorithm for the analogous vertex
onne
tivity problem, 2-VCSS, whose approximationratio is 5/3. Their algorithms used a depth-�rstsear
h (DFS) tree of the graph as a starting point andadded 
arefully 
hosen ba
k edges that 
ross bridgesand 
ut verti
es. Developing on this work further,Garg, Santosh and Singla [11℄ gave an improvedalgorithm for 2-VCSS whose performan
e ratio is3/2. Cheriyan, Seb}o and Szigeti [1℄ improved theapproximation ratio to 17/12 for 2-ECSS using anear de
omposition of the graph in whi
h the numberof odd-length ears is maximal.Vempala and Vetta [19℄ designed new algorithmsfor both 2-ECSS and 2-VCSS with 4/3 approximationratio. The following key 
on
epts introdu
ed by themhave paved the way to design better algorithms. Theyintrodu
ed the novel 
on
ept of a beta-stru
ture toavoid hard 
on�gurations. They also prepro
essedthe graphs to remove 
ut verti
es and adja
ent degreetwo nodes. In addition, they used a solution tothe \D2 problem" (minimal subgraph in whi
h ea
hvertex is in
ident to at least two edges) as the startingpoint instead of a DFS tree. Re
ently, Krysta andKumar [17℄ improved the ratio for 2-ECSS to about1.3326 by employing a smart 
harging s
heme.1.3 Our 
ontributions. We des
ribe an im-proved approximation algorithm for 2-ECSS with anapproximation ratio of 5/4. There are examples toshow that the analysis of our algorithm is tight. Inaddition, one of the examples in [11℄ shows that im-proving beyond our algorithm requires new lowerbounding te
hniques. We 
ombine key ideas fromVempala and Vetta [19℄ and Krysta and Kumar [17℄,and introdu
e new ideas to obtain the 5/4 bound.



1.4 Other related work. Hartvigsen [12, 13℄ haspresented polynomial-time algorithms for �nding 3-
y
le-free maximal 2-mat
hings in general graphs,and 4-
y
le (square) free maximal 2-mat
hings in bi-partite graphs. The problem of �nding a minimum-weight k-edge-
onne
ted spanning subgraph (k-ECSS) is known to be NP-hard [10℄. Khuller andVishkin [16℄ obtained a 2-approximation algorithmfor weighted k-ECSS for k > 1.Nagamo
hi and Ibaraki [18℄ gave an eÆ
ient al-gorithm for �nding a sparse k-
onne
ted subgraphof a given graph. Khuller and Raghava
hari [15℄demonstrated an algorithm for k-ECSS with approx-imation ratio of 1.85 and an algorithm for k-VCSSwith a performan
e ratio of 2 + 1n in graphs satis-fying the triangle inequality. Fernandes [6℄ improvedthe approximation ratio to 1.75 for k-ECSS. Cheriyanand Thurimella [3℄ presented an elegant algorithm(whi
h we 
all the CT algorithm) that a
hieves a per-forman
e ratio of 1 + 2k+1 for unweighted k-ECSS.They also presented an algorithm for the unweightedk-vertex-
onne
tivity problem (k-VCSS) with 1 + 1kas the approximation ratio. Cheriyan, Vempala andVetta [2℄ presented an algorithm for weighted k-VCSS with approximation ratio O(log k) (as long asjV j � 6k2).Gabow [8℄ has given a 3/2 approximation algo-rithm for 3-ECSS. This mat
hes the ratio obtainedby the CT algorithm, but Gabow's algorithm workson multigraphs as well, whereas the CT algorithmguarantees a ratio of 3/2 for 3-ECSS only on simplegraphs. In fa
t Gabow [9℄ shows examples of multi-graphs for whi
h the ratio obtained by the CT algo-rithm is arbitrarily 
lose to 2. In that paper he alsoshows how to modify an earlier algorithm of [15℄ fork-ECSS to multigraphs with a performan
e ratio ofabout 1.61.2 De�nitionsLet G = (V;E) be the given graph with jV j = n. LetOpt be an optimal 2-ECSS of G. We will also use Optto denote the 
ardinality of an optimal 2-ECSS of G,and this should 
ause no 
onfusion. A node v is 
alleda beta vertex if the removal of some two nodes x and yfrom G (along with their in
ident edges) results in atleast three 
onne
ted 
omponents with one of them
ontaining just v. This de�nition extends easily tothe 
on
ept of a beta pair. A subgraph H = (V;E0)with E0 � E is 
alled D2 if the degree of ea
h node isat least 2. A 2-mat
hing is a subgraph, all of whosenodes have degree 2 or less. It is easily shown that theminimal D2 and the maximal 2-mat
hing problemsare 
losely related, and a solution for one 
an be

easily 
onverted into a solution for the other. Bothproblems are solved using algorithms for mat
hing.Vempala and Vetta [19℄ showed that there isno loss of generality in assuming that G has no
ut verti
es, beta verti
es or pairs, and adja
entdegree-2 nodes. We will use their prepro
essing stepsand apply our algorithm only on su
h prepro
essedgraphs. In addition, as suggested by them, we willstart with a minimal 3-
y
le-free D2, or equivalently,a maximal 3-
y
le-free 2-mat
hing. It is easy to
onvert any minimal D2 into a maximal 2-mat
hingby deleting all but two edges at every node whosedegree is more than 2, and a similar transformationin the other dire
tion is also possible.3 Overview of the algorithmWe will assume that the graph G has already beenprepro
essed to ensure that it has no 
ut-verti
es,beta nodes and pairs, and adja
ent degree-2 nodes(see [19℄ for more details). We then use Hartvigsen'salgorithm [12℄ to �nd, in polynomial time, a maximal3-
y
le-free 2-mat
hing (maximal subgraph without3-
y
les, in whi
h ea
h vertex is in
ident to at mosttwo edges). Let the 2-mat
hing that we obtain be a
olle
tion of 
y
les C and a set of paths P .Proposition 3.1. Let G = (V;E) be a graph de�nedon n � 4 verti
es, with no 
ut verti
es. There existsan optimal 2-ECSS of G that has no 3-
y
les.Proof. The following pro
edure 
an be used to re-move any 3-
y
les from an optimal 2-ECSS (Opt)without in
reasing its 
ardinality. Suppose it has a3-
y
le xyzx. Sin
e all edges of Opt must be 
riti
al,the removal of the 3 edges of this 3-
y
le must breakup Opt into three 
onne
ted 
omponents, with ex-a
tly one of fx; y; zg in ea
h 
omponent. Otherwise,if for example, x and y are in the same 
omponent,we 
an �nd 3 paths between x and y, and thereforethe edge (x; y) is redundant, 
ontradi
ting the min-imality of Opt. Sin
e the graph has no 
ut verti
es,there must be an edge e in G that 
onne
ts the 
om-ponent 
ontaining x to one of the other 
omponents,say y's 
omponent. In this 
ase, adding e and remov-ing (x; y) gives an optimal 2-ECSS of G that has onefewer 3-
y
le than Opt.Proposition 3.2. Let G = (V;E) be a graph de�nedon n � 4 verti
es, with no 
ut verti
es. Let H be amaximal 3-
y
le-free 2-mat
hing of G, 
onsisting ofa 
olle
tion of 
y
les C and a set of paths P . Let Optbe the 
ardinality of an optimal 2-ECSS of G. ThenOpt � n+ jP j.



Proof. A simple 
ounting argument shows that jH j =n � jP j. Sin
e H is maximal and n is �xed, P isminimal for a 3-
y
le-free 2-mat
hing.Proposition 3.1 showed that G has an optimal 2-ECSS that does not have any 3-
y
les. Consider anear de
omposition of su
h an optimal solution. Let ebe the number of its ears. Therefore Opt = n+ e�1.Sin
e it is a minimal solution, it has no trivial ears(with just one edge). Deleting the �rst and last edgeof ea
h ear gives us a 2-mat
hing with 1 
y
le ande � 1 paths. Sin
e we started with a 3-
y
le-freeoptimal solution, we get a 3-
y
le-free 2-mat
hing.As observed earlier, the number of paths is minimalin H and therefore, jP j � e � 1. Therefore, Opt =n+ e� 1 � n+ jP j.3.1 Charging strategy. Sin
e our goal is to getan algorithm whose ratio is 5/4, we 
an use up to54 (n+ jP j) edges. We split this into two parts. Ea
hvertex is given a 
harge of 5/4, 
alled its vertex
harge. Ea
h path in P is also given a 
hargeof 5/4, 
alled its path 
harge. As the algorithmbuilds a solution, it has to pay for the edges througha 
ombination of vertex and path 
harges. Our
harging strategy has been adopted from the workof Krysta and Kumar [17℄.With C and P on hand, we build a DFS tree ofG using the following strategy. When the �rst nodex1 of a 
y
le X 2 C, where X = fx1; x2; : : : ; xkg,is dis
overed, we will make the DFS go through thenodes of the 
y
le in sequen
e until it rea
hes the endof the 
y
le. Upon rea
hing a leaf node, we take thesubgraph indu
ed by the last 7 nodes and see if thereis a di�erent way of traversing them su
h that thenew leaf vertex is adja
ent to an unvisited vertex. Ifsu
h a reorganization is possible, we do so, and theDFS is able to 
ontinue further. Later we will showthat we need to look for spe
i�
 
on�gurations, andhen
e this sear
h for a path in the 7-node indu
edsubgraph 
an be done eÆ
iently.When a path Y 2 P is en
ountered by DFS, itis not ne
essary that the initial node en
ountered bean end vertex of the path. We use the following ideafrom [17℄ to handle paths, with a minor modi�
ation.If DFS enters Y at one of its end verti
es, then it goesthrough the verti
es of the path in that sequen
e.That segment of the DFS tree inherits the 5/4 path
harge of Y . On the other hand, if a node in themiddle of Y is en
ountered, we have the option ofgoing in either dire
tion to one of the ends of thepath. The DFS 
hooses to sear
h the segment ofY that is longer, and allo
ate the 5/4 path 
hargeto the smaller, unexplored segment, whi
h is 
alled

the residual segment of Y . Indu
tively, there is oneresidual segment Y 0 � Y that may still be unexploredwith a path 
harge of 5/4. One ex
eption to thismethod is when the DFS rea
hes the middle of aresidual path of 8 nodes, and the longer segment has5 nodes. In this 
ase alone, we go the other way,expanding the DFS tree by 4 nodes and leaving aresidual segment of 4 nodes. Whenever we 
onsumea path segment of 5 nodes in the DFS tree, we assignthat segment a path 
harge of 1/4.When a residual segment gets small, we partitionthe available path 
harge to both segments to ensurethe following. Ea
h segment of three nodes or �venodes is allo
ated a path 
harge of 1/4, two nodesa 
harge of 1/2 and a singleton node a 
harge of3/4. These path 
harges will be used to a

ount foredges when a bran
h of the DFS tree has fewer than 4nodes. The reason behind allo
ating a 
harge of 1/4to path segments of 5 nodes will be dis
ussed later.Sin
e the 2-mat
hing solution that we used has no 3
y
les, bran
hes with fewer than 4 nodes 
an only bepath segments.Proposition 3.3. The s
heme des
ribed above dis-tributes path 
harges as follows: 5-node and 3-nodesegments of a path re
eive at least 1/4 ea
h, 2-nodesegments re
eive at least 1/2 ea
h, and 1-node seg-ments re
eive at least 3/4 ea
h.We break the DFS tree into a sequen
e of pathsin a natural way. The �rst path starts at the root andgoes down to the �rst leaf en
ountered. Every timethe DFS �nds an unvisited vertex and starts a newsear
h, we start building a new path that extends upto the �rst leaf node en
ountered by it. Let these DFSpaths be D1; D2; : : : ; Dp. We will pro
ess the pathsone at a time and 2-
onne
t ea
h path by adding
arefully 
hosen ba
k edges. Sele
ted edges of thepaths will be dropped in some 
ases. We will showthat we 
an 2-
onne
t ea
h path using the vertex
harge of 5/4 re
eived by ea
h vertex plus any path
harge it may have been allo
ated.3.2 Additional operations. In general, ourstrategy is to try to 
onstru
t large 
y
les startingat a leaf. Some 
on�gurations are diÆ
ult to han-dle and we introdu
e additional operations that willenable our algorithm to avoid these diÆ
ult 
ases.Cy
le shrinking: During the 
ourse of thealgorithm, we may �nd a 
y
le C of 5 or more edgesfor whi
h we are able to prove that Opt uses at leastjCj � 1 edges within the subgraph indu
ed by C. Insu
h 
ases, we shrink the 
y
le C into a single nodeand solve the resulting problem re
ursively, and then



add C to its output. It is easy to show that thiss
heme works as long as jCj � 5 [19℄. We 
all thisoperation as Shrink(C). We extend it to shrinkinga larger 2-
onne
ted subgraph of G as follows. Let Sbe a set of 11 nodes that 
an be 2-
onne
ted using 12edges (using 2 ears). If we 
an prove that any 2-ECSSof G 
ontains at least 10 edges within the subgraphindu
ed by S, then we 
an apply the above shrinkingstrategy to S and re
ursively solve the problem andstill manage to get a 5=4 approximation ratio.Lemma 3.1. Let G = (V;E) be a 2-edge-
onne
tedgraph that has neither 
ut verti
es nor beta verti
esand pairs. Suppose there is a subset C � V of nodesfor whi
h it is possible to prove that any 2-ECSS ofG 
ontains at least jCj � 1 edges within the indu
edsubgraph of C, and jCj � 5. Suppose there existsa subgraph that 2-
onne
ts the nodes of C using atmost jCj + j jCj�54 k edges. Then we 
an shrink Cand solve the 2-ECSS problem and still a
hieve anapproximation ratio of 5/4.Proof. Suppose we take an optimal 2-ECSS, Opt, andshrink C into a single node, then we get a 2-
onne
tedgraph that has jV j � jCj + 1 nodes and at mostOpt�jCj+1 edges. Suppose we �nd a 2-ECSS of theshrunken graph using a 5/4 approximation algorithm.The solution returned has at most 54 (Opt � jCj + 1)edges. We now expand the nodes of C and addthe subgraph that 2-
onne
ts C to it. We get a 2-
onne
ted subgraph of G that has at most54�Opt� jCj+ 1�+ jCj+ j jCj � 54 kedges, whi
h is at most 54Opt.Donation: In 
ertain 
ases, when we are pro-
essing a path D, if one of its nodes, v, has a 
hild 
in the DFS tree outside D, i.e., 
 would be the rootof a path Dk for some k > i, (see Figure 1(a)), wemay 2-
onne
t all nodes of D ex
ept v. The pathDk will be extended to in
lude v (see Figure 1(b)),and in this 
ase, we say that D donates v to Dk. Ifit so happens that Dk is a path of 4 nodes, then wewould have to provide an extra 
harge of 1/4 to Dk,sin
e we assumed that all 5-node path segments havea path 
harge of 1/4 available, unless it 
ame from a5-
y
le. We will show that when D donates a singlevertex v, it has ex
ess 
harge available, and thereforegives to Dk a 
harge of 1/4 from its ex
ess.Plunder: Consider an edge (u; v) 2 C, where Cis a 
y
le that we are 
urrently 
onstru
ting from theleaf node of a path D. Suppose u has an unpro
esseddes
endant d that is part of a path Dk 6= D, su
h

(a)Dk
12v456
78D D87654v21 
Dk(b)


1 2uv56 65vu 

(d)(
) 1 2D D
DkDkd d

Figure 1: Donation and plunderingthat there is some ba
k edge (d; v) (see Figure 1(
)).In this 
ase, we 
an repla
e the edge (u; v) by a pathfrom u to v through d (see Figure 1(d)). We referto this operation as a plunder. During a plunder, wea

ount for the vertex 
harges in the following way.We 
an show that if Dk either has at most 4 nodes oris a 5-node 
y
le, then all its verti
es are plundered.Otherwise, we guarantee that at least 4 nodes areplundered from Dk. If p nodes are plundered fromDk by u, they have a vertex 
harge of 5p=4 available,out of whi
h u keeps p+ 1=2 and returns the rest toDk as path 
harge allo
ated to Dk by the plunderer.This allows enough 
harge to 2-
onne
t the left overnodes in Dk. Note that in 
ase Dk originally had 5nodes, and only one node is left after the plunder,then it still has a vertex 
harge of 5/4, an alreadyavailable path 
harge of 1/4, and a path 
harge of3/4 left by the plunderer, whi
h together a

ounts for2 edges that will be needed to 2-
onne
t this singlenode to the 
ore. Also, D has gained a 
harge of 1=2,whi
h is the equivalent of having two extra nodes init. For nodes of any other Dx in the path from uto Dk, we ensure that the e�e
tive path length of Dxstays the same. For ea
h node that u takes away fromDx, it takes away only 1 out of the 5/4 vertex 
hargeavailable and it leaves behind a path 
harge of 1=4 toDx. Due to this a

ounting method, after plundering,the e�e
tive length of C is equal to the number ofnodes in it from D plus two 
orresponding to the1/2 it gained from Dk. In addition, paths whi
hlost nodes due to a plunder have extra quarters to
ompensate their loss, and therefore, when we 2-
onne
t them, we 
an a
t as if they still have theiroriginal length.3.3 More details. We �rst start by 2-
onne
tingD1, the �rst path in the DFS tree. We will tryto build an ear de
omposition of the nodes of D1,



starting from the leaf. On
e the ear de
ompositionrea
hes the root vertex, all but the donated verti
esof D1 are two-
onne
ted, whi
h we will 
all as the\
ore". We then pro
eed iteratively as follows. Outof the remaining paths, we sele
t the path D whosehead is visited earliest by DFS and 2-
onne
t theirnodes to the 
ore using the same ideas. Note thatthe paths may be pro
essed in a order di�erent thanD2; : : : ; Dk sin
e donations and plunders a�e
t theorder in whi
h the paths are 
onsidered. Sin
e thereare no 
ross edges with respe
t to a DFS tree, we areable to 2-
onne
t them one path at a time. At the endof the sequen
e, we get a solution that is 2-
onne
tedand, in fa
t, we 
ompute an ear de
omposition of thesolution in whi
h most ears 
ontain at least 4 newnodes. There may be a few smaller ears generated byresidual segments with three or fewer nodes, and wea

ount for their edges by 
ombining vertex 
hargesand path 
harges. Sin
e the paths D are generatedby DFS, non-tree edges of G are all ba
k edges.We will show the following through a sequen
e oflemmas:� Lemma 4.1 shows how to �nd a 5-
y
le startingat the leaf of a given path D.� Lemma 4.3 shows how to extend it to a 6-
y
le.� Lemma 4.5 shows how to extend it to a 7-
y
le,donating nodes in some 
ases.In all 
ases, if the path does not have enough nodes,then we will �nd a single 
y
le that in
ludes all nodes.If 
ertain 
on�gurations arise, then we will �nd a
y
le C in whi
h Opt must use at least jCj � 1 edgeswithin C, or a 11 node set whi
h 
an be 2-
onne
tedusing 12 edges within whi
h Opt must use at least 10edges. In these situations, we shrink the nodes intoa single vertex and solve the problem re
ursively.We now des
ribe how our algorithm 2-
onne
tsa DFS path D to the 
ore. The behavior of ouralgorithm depends on the e�e
tive length of the path,whi
h is the original number of verti
es in it plus anyverti
es that may have been donated to it. Re
allthat when a path gets plundered and loses verti
es,it gets to keep a 1/4 for ea
h vertex that it loses,e�e
tively maintaining the same length.jDj � 3: Paths with less than 4 verti
es are eitherpath segments or paths that lost verti
es in a plunder,sin
e we don't have 3-
y
les in our initial 2-mat
hingthat guides the DFS. As mentioned in our 
hargingstrategy, when jDj � 3, then D has a path 
hargeof (4� jDj)=D. We are able to 2-
onne
t D using asingle ear whi
h 
an be paid using vertex and path
harges.

jDj = 4 or 5: A single ear that extends from the
ore through all the verti
es of D is 
onstru
ted. Theedges are paid using the vertex 
harges of D.jDj = 6 or 7: A single ear that extends fromthe 
ore through all the verti
es of D is 
onstru
ted.One of the verti
es may be donated in this step. Theedges are paid using the vertex 
harges of the verti
esof D in the single ear. If su
h an ear 
annot be
onstru
ted, we show that we 
an 
all Shrink(D).The proof for 
ases jDj = 6 or 7 is similar to theproof of Lemma 4.5 and is not in
luded due to la
kof spa
e.jDj = 8: First we �nd a 
y
le of length at least5 starting at the leaf node. We then shrink this 
y
leinto a single vertex, and �nd a single ear (
ontainingat most 5 edges) starting at the 
ore that in
ludes allthe nodes. Together at most 2 ears are used, and theedges 
an be paid using vertex 
harges.jDj = 9 or 10: Find a 
y
le of length at least 6starting at the leaf. Shrink the 
y
le and 
onne
t theremaining nodes to the 
ore using a single ear.jDj = 11: Find a 
y
le of length at least 6starting at the leaf. Try to extend the 
y
le usingmethods of Lemma 4.5. If su

essful, shrink 
y
leand 2-
onne
t the nodes using another ear. In someof the 
ases, we will donate up to 3 nodes to otherpaths, thus shrinking the length of D. We 
an then2-
onne
t the remaining nodes using one of the earlier
ases. Otherwise we will show that any 2-ECSS hasat least 10 edges in the subgraph indu
ed by D andtherefore 
all Shrink(D).jDj = 12: It is easy to extend the method usedfor jDj = 8 to any multiple of 4 by 2-
onne
ting Dusing jDj=4 ears as follows. Find a 5-
y
le from theleaf, shrink and re
urse.jDj > 12: We �nd a 
y
le with 6 or more edgesfrom the leaf, shrink it into a single node and repeatthe pro
ess two more times. If there are any nodesleft in D, �nd a 
y
le of length 5 or more, until allnodes of D (ex
ept donated nodes) are 2-
onne
tedto the 
ore.4 Growing a 
y
le from the leafWe now state and prove several interesting and useful
laims. In the following, when we say a ba
k edge
rosses a node v, we mean that there is a ba
k edgein G that 
onne
ts a proper des
endant of v to aproper an
estor of v. A node x 
rosses (an an
estor)v if either there is a ba
k edge (x; y) 
rossing v or ifthere is a ba
k edge (d; y) that 
rosses v, where d is ades
endant of x through a 
hild 
 not in the 
urrentpath D. In su
h 
ases, if (x; y) 62 E, then we will adda virtual edge (x; y) when we seek to grow a 
y
le.



On
e we have identi�ed the set of ears with whi
hwe 2-
onne
t the nodes of vi to the 
ore, we repla
eall the virtual edges by plundering the 
orrespondingtree path from x to d and the ba
k edge (d; y). Sin
ed is a des
endant of x through a 
hild 
 that is notin D, the paths added to repla
e the virtual edgesare all disjoint from ea
h other. Therefore, in thefollowing dis
ussion, we will treat virtual edges thesame as the real edges of G. Hen
e we will assumethat if x 
rosses v, then there is a ba
k edge (x; y)that 
rosses v. In addition, we will treat the 
ore asan extra vertex (labeled as vq below) that is added tothe end of the path, but the 
ore does not have any
harges available to pay for any edges.4.1 Finding a 5-
y
leLemma 4.1. Let D be a DFS path whose verti
es arelabeled v1; v2; :::; vq starting from the leaf vertex. Itis possible to �nd a 
y
le that in
ludes all verti
es infv1; v2; : : : ; vkg for some k � min(q; 5). The 
y
lemay in
lude plundered segments from the heads ofunpro
essed paths.Proof. We show that a 
y
le of �ve or more verti
es
an be formed based on one of the following 
ases.Observe that v1 is a leaf vertex in the DFS tree andtherefore has no 
hildren. The only edges from v1other than the tree edge (v1; v2) are ba
k edges.Case 1: The farthest ba
k edge from vertex v1 is(v1; vk), 4 < k � q. Form the 
y
le v1 : : : vkv1.
v1 v2v3v1 v2v3v4v5vk v4v5vk (b)(a)Figure 2: Lemma 4.1: Case 2Case 2: The farthest ba
k edge from vertex v1is (v1; v4). In order that vertex v4 is not a 
utvertex, either v2 or v3 (or both) must 
ross v4.If v3 
rosses v4 with edge (v3; vk), then form the
y
le v1v2v3vk : : : v4v1 (see Figure 2 (a)). Otherwiseif only v2 
rosses v4, then the edge (v1; v3) mustexist, sin
e without it, the removal of v2 and v4generates three 
omponents | fv5; : : : ; vqg, fv3g,and fv1g, whi
h makes v1 and v3 beta verti
es.Observe that v3 
annot have a 
hild 
 other thanv2, sin
e in that 
ase we would then have 
ontinued

the DFS as v4; v1; v2; v3; 
; : : : instead of a

eptingv1 as a leaf vertex. Hen
e, we 
an form the 
y
lev1v2vk : : : v4v3v1 (see Figure 2 (b)).
(a) (b)

vjv4v5 v3v2v1 v1 v2v3vkv5v4
Figure 3: Lemma 4.1: Case 3Case 3: The farthest ba
k edge from vertex v1is (v1; v3). As in the previous 
ase, v2 must 
rossv3, sin
e otherwise v3 would be a 
ut vertex. If thefarthest ba
k edge from v2 lands on vj with j > 4,then form the 
y
le v1v2vj : : : v3v1 (see Figure 3 (a)).Otherwise, if the farthest ba
k edge from v2 onlyrea
hes v4, then v4 threatens to be a 
ut vertex. Theonly possibility is that v3 must 
ross v4 with a ba
kedge that lands on vk, k > 4. In this 
ase, we formthe 
y
le v1v2v4 : : : vkv3v1 (see Figure 3 (b)).The above lemma 
an be extended to the 
asewhen vertex v1 is not a single node of G, but a 2-
onne
ted 
omponent that has been shrunk into asingle node. Sin
e the algorithm works by repeatedly�nding a 
y
le starting from the leaf and shrinkingit into a single node, it is ne
essary to prove anextended version of Lemma 4.1. The proof is more
ompli
ated we 
an no longer use the fa
t that 
ertainnodes 
annot have neighbors outside the 
urrent pathbe
ause the algorithm reorients the last few nodes ofa path if that allows it to be extended further. Weare able to prove the lemma by introdu
ing donationsand plunders in 
arefully sele
ted pla
es. There aremany di�erent 
ases to 
onsider, and we omit theproof here due to la
k of spa
e.Lemma 4.2. Let D be a DFS path labeled as inthe previous lemma, v1; : : : ; vq. The leaf node v1represents a 2-
onne
ted 
omponent formed by a setof ears starting at the original leaf of D, and vqis the 
ore. We 
an �nd a 
y
le that in
ludes allverti
es in fv1; v2; : : : ; vkg for some k � min(q; 5).At most one vertex is donated, and the 
y
le mayin
lude plundered segments from the heads of paths
onsidered after D.4.2 Finding a 6-
y
le. We now show that theoperations in Lemma 4.1 
an be 
ontinued furtherto �nd a 
y
le of length 6 or more.



Lemma 4.3. Let D be a DFS path 
ontaining at least7 nodes, labeled as in the previous lemma. It is eitherpossible to �nd a 5-
y
le C on whi
h we 
an 
allShrink(C) or to �nd a 
y
le that in
ludes all verti
esin fv1; v2; : : : ; vkg for some k � 6. As before, the
y
le may in
lude plundered segments from the headsof paths 
onsidered after D.Proof. By Lemma 4.1, we 
an �nd a 
y
le throughverti
es v1 to v5. If this 
y
le also in
ludes vertexv6, we are done. Otherwise, we show how to extendthe 
y
le further based on one of the following 
ases.We 
onsider a 
ase only if all the previous 
ases havefailed.To prevent v5 from being a 
ut vertex, at leastone of the verti
es fv1; v2; v3; v4g must 
ross v5. Inall 
ases below, let the ba
k edge that 
rosses v5 landon vk, k > 5.Case 1: v1 and/or v4 
an 
ross v5. In this 
ase,we expand the 
y
le by taking either v1 : : : vkv1 orv1v2v3v4vk : : : v5v1.
v1 v1vkv6v5 v4v3v2 v2 v3 v4v5v6vk
Figure 4: Lemma 4.3: Case 2Case 2: edge (v1; v4) exists. Either v2 or v3
rosses v5. In this 
ase, we expand 
y
le by takingeither v1v4v3v2vk : : : v5v1 or v1v2v3vk : : : v5v4v1 (seeFigure 4).Case 3: (v1; v4) 62 E. Neither v1 nor v4 
anhave any 
hildren outside the 
urrent path D, sin
eotherwise, the path would have been extended toin
lude that vertex by reorienting the path, makingv1 or v4 as the last vertex of the path, making itfurther extensible by DFS. Therefore, sin
e (v1; v4) isnot an edge, any 2-
onne
ted solution must have atleast 4 edges in
ident to fv1; v4g and all these edgesare only within C = fv1; v2; v3; v4; v5g. In otherwords, there are at least 4 edges within C in anyoptimal solution. Therefore we 
an shrink C into asingle node and re
urse by 
alling Shrink(C) (with5/4 as the target ratio).We now state the extended version of the abovelemma. It is similar to Lemma 4.2. In somesituations, we shrink a set of verti
es in whi
h weare able to prove that any 2-ECSS must in
lude at

least jCj � 1 edges. Up to three edges are donated inthe pro
ess of �nding a 
y
le.Lemma 4.4. Let D be a DFS path labeled as inthe previous lemma, v1; : : : ; vq. The leaf node v1represents a 2-
onne
ted 
omponent formed by a setof ears starting at the original leaf of D, and vq isthe 
ore. It is either possible to �nd a set of nodes Con whi
h we 
an 
all Shrink(C) or to �nd a 
y
lethat in
ludes all verti
es in fv1; v2; : : : ; vkg for somek � min(q; 6). At most three verti
es are donated,and the 
y
le may in
lude plundered segments fromthe heads of paths 
onsidered after D.4.3 Finding a 7-
y
le. We now 
onsider the 
asewhen jDj = 11. Combining the vertex 
harges ofall these nodes gives us a total of 13 3/4. Thereforein order to get a ratio of 5/4, we need to try to 2-
onne
t D to the 
ore (whi
h 
an be viewed as a12th vertex) using at most 13 edges, i.e., using atmost 2 ears. We will show how to pro
ess D su
hthat we will either 2-
onne
t D to the 
ore using atmost 2 ears, or �nd a way to donate at least one node,and up to three nodes, to unpro
essed paths so thatthe remaining nodes of D 
an be 2-
onne
ted to the
ore easily using up to two ears, or show that we 
anshrink D by proving that any 2-ECSS must 
ontainat least 10 edges in the indu
ed subgraph of D.Lemma 4.5. Let D be a DFS path 
ontaining 11nodes, labeled v1; : : : ; v11; v12, where v12 is the 
ore.It is possible to do at least one of the following:� 2-
onne
t D to the 
ore using 3 ears if it has apath 
harge of 1/4 or more available.� 2-
onne
t D to the 
ore using at most 2 ears,donating at most 3 nodes to other paths that arestill unpro
essed by the algorithm.� Find a set of nodes C su
h that C satis�es the
onditions stated in Lemma 3.1.As before, the 
y
le may in
lude plundered segmentsfrom the heads of paths 
onsidered after D.Proof. By Lemma 4.3, we 
an �nd a 
y
le throughverti
es v1 to v6. If this 
y
le also in
ludes vertexv7, we are done. Otherwise, we show how to extendthe 
y
le further based on one of the following 
ases.We 
onsider a 
ase only if all the previous 
ases havefailed. Note that if we su

eed in extending the 
y
leto be of length 7 or more, then we 
an 2-
onne
t Dby shrinking the 7-
y
le into a single node and then�nding a 
y
le through the six or fewer remainingnodes (in
luding the 
ore).



To prevent v6 from being a 
ut vertex, at leastone of the verti
es fv1; v2; v3; v4; v5g must 
ross v6.In all 
ases below, let the ba
k edge that 
rosses v6land on vk, k � min(q; 7), and let it be a ba
k edgethat goes farthest up the tree.Case 1: v1 and/or v5 
an 
ross v6. The 
y
le isextended to either v1 : : : vkv1 or v1 : : : v5vk : : : v6v1.vkv7 v5v4v2 v3 v2 v3 v4v1v1 vkv6v7 v5v6
Figure 5: Lemma 4.5: Case 2Case 2: v2 or v4 
an 
ross v6 and (v1; v5) 2 E.The 
y
le is extended to either v1v5v4v3v2vk : : : v6v1or v1v2v3v4vk : : : v6v5v1 (see Figure 5).Case 3: only v3 
rosses v6 and (v1; v5) 2 E.Observe that nodes v2 and v4 
an have no 
hildren inthe DFS tree, be
ause for example, if v2 had a 
hild 
,then the algorithm would have reordered the 
urrentpath to be vq ; : : : ; v6; v1; v5; v4; v3; v2 so that the DFS
an be further extended to 
 from v2. Therefore thenodes fv1; v2; v4; v5g have no edges that go out ofthe hexagon, and therefore there are at least 5 edgesin
ident to them in any feasible solution to 2-ECSS.Hen
e, we 
an shrink the hexagon H = fv1; : : : ; v6gin this 
ase and 
all Shrink(H).Case 4: only v3 
rosses v6 and (v1; v5) 62 E.Nodes v1 and v5 have no neighbors outside thehexagon H = fv1; : : : ; v6g as explained in ear-lier 
ases. If (v1; v4) 2 E, then expand 
y
le tov1v2v3vk : : : v6v5v4v1 (see Figure 6 (a)). If (v2; v5) 2E, then expand 
y
le to v1v2v5v4v3vk : : : v6v1 (seeFigure 6 (b)). If (v3; v5) 2 E, then we 
ould havereordered the path as vq ; : : : ; v6; v1; v2; v3; v5; v4, andtherefore v4 has no neighbors outside the 
urrentpath. Therefore in this 
ase, any 2-ECSS must haveat least 5 edges in
ident to fv1; v4; v5g, and hen
e we
all Shrink(H).We have 
onsidered all possible neighbors for v5.If v5 is a degree-2 node, then v4 does not have a 
hild
 other than v3, be
ause, sin
e v4 is not a 
ut vertex,there must be a ba
k edge from a des
endant of 
 thatgoes farther than v4. The ba
k edge 
annot land onv5 be
ause v5 has no neighbors outside H , nor 
anthe ba
k edge land on any vertex beyond v6, sin
ein this 
ase v4 
rosses v6. Therefore any ba
k edges
an only land on v6 and this makes v5 a beta vertex


 

v2
 


vkv6v7v1 v5v4v3v2 v1 vyv7v6 v3v2
v8v5v4(
) (d)

vxv7v6 v5v4v3v1 vyv8 v7v6v1 v2 v3 v4v5(e) (f)

vkv7v6v2 v3v5
vkv6v7v2 v3v5v1v1 v4v4(a) (b)

Figure 6: Lemma 4.5: Case 4on the removal of v4 and v6 (the third 
omponent isthe subtree with 
 as the root). If v2 has no 
hildother than v1, then we 
an 
all Shrink(H), sin
ethere must be at least 5 edges in
ident to fv1; v2; v5gin any 2-ECSS.In the only remaining possibility, let 
 be a 
hildof v2 outside H . By arguing that the graph hasno 
ut verti
es as in Case 3 above, at least one ofthe following 
y
les exists; if needed, v2 and v1 aredonated to 
.� Repla
e (v2; v3) by plundering 
.� v5v4v3vk : : : v8v7v6v5 (see Figure 6 (
)).� v5v4v3v8 : : : vyv7v6v5 (see Figure 6 (d)).� v5v4v3v7v8 : : : vxv6v5 (see Figure 6 (e)).� v5v4v3v7vy : : : v8v6v5 (see Figure 6 (f)).� Call Shrink(H).Case 5: only v4 
rosses v6. If v5 has no otherneighbors in G, it will be a beta vertex. As notedearlier, v5 
annot have any 
hildren other than v4.



v7vkv6v1 v2 v3v4v5
Figure 7: Lemma 4.5: Case 5Therefore at least one of the edges (v1; v5), (v2; v5),or (v3; v5) must exist. Edge (v1; v5) is 
overed underCase 2. If (v3; v5) exists, then we expand the 
y
leto v1v2v3v5v4vk : : : v6v1 (see Figure 7). The only
ase left to 
onsider is when edge (v2; v5) exists.In this 
ase v3 has no neighbors outside the pathbe
ause the algorithm would rearrange the pathas vq ; : : : ; v6; v1; v2; v5; v4; v3 and extend the pathfurther. Hen
e there are at least 5 edges in
identto fv1; v3; v5g in any 2-ECSS, and therefore we 
allShrink(H).Case 6: only v2 
rosses v6. This 
ase is symmet-ri
 to Case 5 above.Case 7: At least two 
onse
utive nodes in the setfv2; v3; v4g have ba
k edges that 
ross v6. We willdis
uss the 
ase when we have ba
k edges (v2; vw) and(v3; vx). The other 
ases will be handled similarly. Ifw = 12 (i.e., v2 has a ba
k edge to the 
ore), thenwe 
an 2-
onne
t D using 2 ears: v12v2v1v6 : : : v12followed by v2v3v4v5v6. The 
ase x = 12 is similar.For the rest of this 
ase, we assume that anyba
k edge from fv2; v3; v4g lands within the pathv7 : : : v11. If there is a ba
k edge from v2 to v7,then we expand the 
y
le to v1v2v7 : : : vxv3v4v5v6v1.Also, if v7 has a ba
k edge to the 
ore, we 
an 2-
onne
t D using 2 ears: v12v7v8v9v10v11v12 followedby vwv2v1v6v5v4v3vx. Also, if (v7; v11) 2 E, then alsowe 
an 2-
onne
t D with 2 ears either by expandingthe 6-
y
le as in the previous 
ase by repla
ing(v2; v3) by v2vw : : : vxv3 and then 
onne
ting theremaining nodes with another ear, or by �nding a�rst ear that starts at the 
ore and in
ludes all nodesof the 6-
y
le and then 
onne
t the remaining nodesusing a se
ond ear.If any of the verti
es fv2; v3; v4; v7; vw�1; vx�1ghas a 
hild outside D, then we 
an donate up to3 nodes and 2-
onne
t the remaining nodes using 2ears. For example, if v3 has a 
hild 
, then we donatefv3; v4; v5g to 
 and use the 
y
le v1v2vw : : : v6v1 asthe �rst 
y
le and we 
an 2-
onne
t the 8 remainingnodes in the path using at most two ears.If three or more nodes in v7; : : : v11 have ba
k

edges to the 
ore, then we 
an 2-
onne
t D using twoears. On the other hand, if at most two nodes of Dare 
onne
ted to the 
ore, and the other nodes do nothave any neighbors outside D, then any 2-ECSS of Ghas at least 10 edges within the subgraph indu
ed byD, and we 
an shrink D into a single vertex (and we
an 2-
onne
t D using at most 11 edges).vwv7v6v1v2 v3 v4v5 vxv7v6v1 v2 v3v4v5
(a) (b)Figure 8: Lemma 4.5: Case 8Case 8: only v2 and v4 
ross v6. Let thefarthest ba
k edge with whi
h v2 
rosses v6 landon vw, and the 
orresponding ba
k edge for v4land on vx. If edge (v1; v3) exists, then expand
y
le to v1v2vw : : : v6v5v4v3v1 (see Figure 8 (a)).If edge (v3; v5) exists, the expand the 
y
le tov1v2v3v5v4vx : : : v6v1 (see Figure 8 (b)). The 
asewhen edge (v1; v5) exists was already 
onsidered inCase 2. If fv1; v3; v5g form an independent set, withnone of the verti
es 
onne
ted to a node outside thehexagon, then all 6 edges of the hexagon are neededin any 2-ECSS solution, and therefore we 
an shrinkthe hexagon and we 
all Shrink(H). The only 
aseleft is when node v3 has a neighbor outside H . This
an happen when there is a ba
k edge from a des
en-dant of v2 that has a ba
k edge to v3. In this 
ase,we repla
e (v2; v3) by a path using the plunder oper-ation. On the other hand, if v3 has a 
hild 
 outsideH , then we donate either fv3; v4; v5g or fv3; v2; v1g to
 depending on whether w < x or not, and 2-
onne
tthe remaining nodes using two ears.5 SummaryIn summary, our algorithm uses a 3-
y
le-free maxi-mal 2-mat
hing to sele
t a suitable depth-�rst sear
htree of the graph. The DFS tree is broken into a 
ol-le
tion of paths and we 2-
onne
t the paths one ata time. We a

ount for edges by a 
harging methodwhere we try to pay using vertex 
harges wheneverpossible and show that when we need extra, thenpath 
harges are available to 
over the de�
it. Weintrodu
ed new operations of donation and plunder-ing to handle some in
onvenient 
on�gurations. For a



graph, the algorithm either shrinks a subset of nodesC (by 
alling Shrink(C)) when we are able to provethat at least jCj � 1 edges are ne
essary within Cin any 2-ECSS, or �nds a solution that uses at most54 (n + jP j). A more pre
ise statement of when weapply Shrink(C) is stated in Lemma 3.1.Theorem 5.1. Given a 2-edge-
onne
ted, undire
tedgraph G = (V;E), there is a polynomial-time algo-rithm that returns a 2-ECSS of G that is within 5=4of an optimal 2-ECSS.Instead of using a 3-
y
le-free 2-mat
hing, if anarbitrary maximal 2-mat
hing is used, then it 
an beshown that the performan
e ratio of our algorithm isat most 21=16 = 1:3125.6 Vertex 
onne
tivityRe
ently, we have identi�ed how to extend our algo-rithm to 2-VCSS. There are several issues to solve.First, we need to show how Shrink(C) is handledfor vertex 
onne
tivity. Also, we shrink 
y
les whenthey get large enough during the 
ourse of the al-gorithm. It needs to be shown that edges 
an be
arefully 
hosen su
h that the resulting graph is 2-vertex-
onne
ted. In fa
t, in 
ertain examples, extraedges need to be added when we expand C after 
all-ing Shrink(C), and in these 
ases we are able toshow that Opt is also bigger. Also, when we sele
tedges in
ident to the 
ore, we need to ensure thatboth edges that 2-
onne
t a path D are not in
identto the same vertex of the 
ore (i.e., we need to getan open ear de
omposition). More details of the fol-lowing theorem will be provided in the full version ofthe paper to be made available soon.Theorem 6.1. Given a 2-vertex-
onne
ted, undi-re
ted graph G = (V;E), there is a polynomial-timealgorithm that returns a 2-VCSS of G that is within5=4 of an optimal 2-VCSS.Referen
es[1℄ J. Cheriyan, A. Seb}o, Z. Szigeti, Improving on the1.5 approximation of a smallest 2-edge 
onne
tedspanning subgraph, SIAM J. Dis
ret. Math., 14,pp. 170-180, 2001.[2℄ J. Cheriyan, S. Vempala and A. Vetta, Approxima-tion algorithms for minimum-
ost k-
onne
ted sub-graphs, Pro
. of the 34th ACM Symposium on theTheory of Computing (STOC), 2002.[3℄ J. Cheriyan and R. Thurimella, Approximatingminimum-size k-
onne
ted spanning subgraphs viaMat
hing, SIAM J. Comput., 30, pp. 528-560, 2000.

[4℄ A. Czumaj and A. Lingas, On approximability of theminimum-
ost k-
onne
ted spanning subgraph prob-lem, Pro
. 10th Annual ACM-SIAM Symposium onDis
ret. Alg. (SODA), pp. 281-290, 1999.[5℄ J. Edmonds, Matroid interse
tion, Annals of Dis-
ret. Math., 14, pp. 39-49, 1979.[6℄ C. G. Fernandes, A better approximation for theminimum k-edge-
onne
ted spanning subgraph prob-lem, J. Algorithms, 28, pp. 105-124, 1998.[7℄ A. Frank and E. Tardos, An appli
ation of sub-modular 
ows, Linear Algebra and its Appli
ations,114/115, pp. 320-348, 1989.[8℄ H. N. Gabow, An ear de
omposition approa
h toapproximating the smallest 3-edge 
onne
ted span-ning subgraph of a multigraph, Pro
. 13th AnnualACM-SIAM Symp. on Dis
ret. Algorithms (SODA),pp. 84-93, 2002.[9℄ H. N. Gabow, Better performan
e bounds for �ndingthe smallest k-edge 
onne
ted spanning subgraphof a multigraph, Pro
. 14th Annual ACM-SIAMSymp. on Dis
ret. Algorithms (SODA), 2003.[10℄ M. R. Garey and D. S. Johnson, Computersand intra
tability: A guide to the theory of NP-
ompleteness, W. H. Freeman, San Fran
is
o, 1979.[11℄ N. Garg, V. Santosh and A. Singla, Improved ap-proximation algorithms for bi
onne
ted subgraphsvia better lower bounding te
hniques, Pro
. 4th An-nual ACM-SIAM Symp. on Dis
ret. Algorithms(SODA), pp. 103-111, 1993.[12℄ D. Hartvigsen, Extensions of mat
hing theory, Ph.D.Thesis, Carnegie-Mellon University, 1984.[13℄ D. Hartvigsen, The square-free 2-fa
tor problem inbipartite graphs, Pro
. of the 7th Integer Program-ming and Combinatorial Optimization Conferen
e(IPCO), pp. 234-241, 1999.[14℄ A. Itai, C.H. Papadimitriou, and J.L. Szwar
�ter,Hamilton paths in grid graphs, SIAM J. Comput.,pp 676-686, 1982.[15℄ S. Khuller and B. Raghava
hari, Improved approx-imation algorithms for uniform 
onne
tivity prob-lems, J. Algorithms, 21, pp. 433-450, 1996.[16℄ S. Khuller and U. Vishkin, Bi
onne
tivity approx-imations and graph 
arvings, J. Asso
. Comput.Ma
h., 41, pp. 214-235, 1994.[17℄ P. Krysta and V. S. Anil Kumar, Approximation al-gorithms for minimum size 2-
onne
tivity problems,Pro
. 18th Intl. Symposium on Theoreti
al Aspe
tsof Computer S
ien
e (STACS), pp. 431-442, 2001.[18℄ H. Nagamo
hi and T. Ibaraki. Linear time al-gorithms for �nding sparse k-
onne
ted spanningsubgraph of a k-
onne
ted graph, Algorithmi
a, 7,pp. 583-596, 1992.[19℄ S. Vempala and A. Vetta, Fa
tor 4/3 approxi-mations for minimum 2-
onne
ted subgraphs, AP-PROX 2000, pp. 262-273, 2000.


