
A 5/4-approximation algorithm for minimum 2-edge-onnetivity�Raja Jothi Balaji Raghavahari Subramanian VaradarajanyAbstratA 5/4-approximation algorithm is presented for theminimum ardinality 2-edge-onneted spanning sub-graph problem in undireted graphs. This improvesthe previous best approximation ratio of 4/3. It isshown that our ratio is tight with respet to urrentlower bounds, and any further improvement is possi-ble only if new lower bounds are disovered.1 IntrodutionA network design problem whih requires the under-lying network to be resilient to link failures is knownas the Edge Connetivity Survivable Network DesignProblem (EC-SNDP). 2-edge-onnetivity (2EC) is amajor feature in today's fast and reliable ommuni-ation networks as single transmission failure ouldause intolerable losses. 2-edge onnetivity betweenany two terminals in a network is needed to guaranteenetwork onnetivity in ase of a main transmissionlink failure. A graph is said to be 2-edge-onnetedif the deletion of any single edge does not disonnetit. In other words, a link failure ontinues to allowommuniation between funtioning sites.Most network optimization problems that require�nding minimal subgraphs satisfying given onnetiv-ity onstraints are NP-hard. Hene, it has beomeimperative to design approximation algorithms forsuh problems. The problem of �nding a minimumardinality 2-edge-onneted spanning subgraph of agiven undireted graph is known to be NP-hard andMAXSNP-hard [4, 6℄. In this paper, we present a 5/4-approximation algorithm for the 2-edge-onnetedspanning subgraph problem in undireted graphs.1.1 Problem Statement. The input is an ar-bitrary, undireted, 2-edge-onneted graph G =(V;E). On suh a graph, the 2-edge-onnetivityproblem (2-ECSS) is to �nd a minimum ardinal-ity subset of edges H � E suh that the graph�Researh supported by the National Siene Foundationunder grant CCR-9820902.yDepartment of Computer Siene, The University of Texasat Dallas, Rihardson, TX 75080. E-mail: fraja, rbk,sxv010010g�utdallas.edu.

G = (V;H) is 2-edge-onneted. The problem isknown to be NP-hard [10, 14℄. In this paper wepresent an approximation algorithm for the problemthat ahieves a ratio of 5/4. Throughout this paper,\2-onnetivity" refers to 2-edge-onnetivity.1.2 Previous results. In their ground-breakingpaper, Khuller and Vishkin [16℄ demonstrated a3/2-approximation algorithm for 2-ECSS. They alsopresented an algorithm for the analogous vertexonnetivity problem, 2-VCSS, whose approximationratio is 5/3. Their algorithms used a depth-�rstsearh (DFS) tree of the graph as a starting point andadded arefully hosen bak edges that ross bridgesand ut verties. Developing on this work further,Garg, Santosh and Singla [11℄ gave an improvedalgorithm for 2-VCSS whose performane ratio is3/2. Cheriyan, Seb}o and Szigeti [1℄ improved theapproximation ratio to 17/12 for 2-ECSS using anear deomposition of the graph in whih the numberof odd-length ears is maximal.Vempala and Vetta [19℄ designed new algorithmsfor both 2-ECSS and 2-VCSS with 4/3 approximationratio. The following key onepts introdued by themhave paved the way to design better algorithms. Theyintrodued the novel onept of a beta-struture toavoid hard on�gurations. They also preproessedthe graphs to remove ut verties and adjaent degreetwo nodes. In addition, they used a solution tothe \D2 problem" (minimal subgraph in whih eahvertex is inident to at least two edges) as the startingpoint instead of a DFS tree. Reently, Krysta andKumar [17℄ improved the ratio for 2-ECSS to about1.3326 by employing a smart harging sheme.1.3 Our ontributions. We desribe an im-proved approximation algorithm for 2-ECSS with anapproximation ratio of 5/4. There are examples toshow that the analysis of our algorithm is tight. Inaddition, one of the examples in [11℄ shows that im-proving beyond our algorithm requires new lowerbounding tehniques. We ombine key ideas fromVempala and Vetta [19℄ and Krysta and Kumar [17℄,and introdue new ideas to obtain the 5/4 bound.



1.4 Other related work. Hartvigsen [12, 13℄ haspresented polynomial-time algorithms for �nding 3-yle-free maximal 2-mathings in general graphs,and 4-yle (square) free maximal 2-mathings in bi-partite graphs. The problem of �nding a minimum-weight k-edge-onneted spanning subgraph (k-ECSS) is known to be NP-hard [10℄. Khuller andVishkin [16℄ obtained a 2-approximation algorithmfor weighted k-ECSS for k > 1.Nagamohi and Ibaraki [18℄ gave an eÆient al-gorithm for �nding a sparse k-onneted subgraphof a given graph. Khuller and Raghavahari [15℄demonstrated an algorithm for k-ECSS with approx-imation ratio of 1.85 and an algorithm for k-VCSSwith a performane ratio of 2 + 1n in graphs satis-fying the triangle inequality. Fernandes [6℄ improvedthe approximation ratio to 1.75 for k-ECSS. Cheriyanand Thurimella [3℄ presented an elegant algorithm(whih we all the CT algorithm) that ahieves a per-formane ratio of 1 + 2k+1 for unweighted k-ECSS.They also presented an algorithm for the unweightedk-vertex-onnetivity problem (k-VCSS) with 1 + 1kas the approximation ratio. Cheriyan, Vempala andVetta [2℄ presented an algorithm for weighted k-VCSS with approximation ratio O(log k) (as long asjV j � 6k2).Gabow [8℄ has given a 3/2 approximation algo-rithm for 3-ECSS. This mathes the ratio obtainedby the CT algorithm, but Gabow's algorithm workson multigraphs as well, whereas the CT algorithmguarantees a ratio of 3/2 for 3-ECSS only on simplegraphs. In fat Gabow [9℄ shows examples of multi-graphs for whih the ratio obtained by the CT algo-rithm is arbitrarily lose to 2. In that paper he alsoshows how to modify an earlier algorithm of [15℄ fork-ECSS to multigraphs with a performane ratio ofabout 1.61.2 De�nitionsLet G = (V;E) be the given graph with jV j = n. LetOpt be an optimal 2-ECSS of G. We will also use Optto denote the ardinality of an optimal 2-ECSS of G,and this should ause no onfusion. A node v is alleda beta vertex if the removal of some two nodes x and yfrom G (along with their inident edges) results in atleast three onneted omponents with one of themontaining just v. This de�nition extends easily tothe onept of a beta pair. A subgraph H = (V;E0)with E0 � E is alled D2 if the degree of eah node isat least 2. A 2-mathing is a subgraph, all of whosenodes have degree 2 or less. It is easily shown that theminimal D2 and the maximal 2-mathing problemsare losely related, and a solution for one an be

easily onverted into a solution for the other. Bothproblems are solved using algorithms for mathing.Vempala and Vetta [19℄ showed that there isno loss of generality in assuming that G has nout verties, beta verties or pairs, and adjaentdegree-2 nodes. We will use their preproessing stepsand apply our algorithm only on suh preproessedgraphs. In addition, as suggested by them, we willstart with a minimal 3-yle-free D2, or equivalently,a maximal 3-yle-free 2-mathing. It is easy toonvert any minimal D2 into a maximal 2-mathingby deleting all but two edges at every node whosedegree is more than 2, and a similar transformationin the other diretion is also possible.3 Overview of the algorithmWe will assume that the graph G has already beenpreproessed to ensure that it has no ut-verties,beta nodes and pairs, and adjaent degree-2 nodes(see [19℄ for more details). We then use Hartvigsen'salgorithm [12℄ to �nd, in polynomial time, a maximal3-yle-free 2-mathing (maximal subgraph without3-yles, in whih eah vertex is inident to at mosttwo edges). Let the 2-mathing that we obtain be aolletion of yles C and a set of paths P .Proposition 3.1. Let G = (V;E) be a graph de�nedon n � 4 verties, with no ut verties. There existsan optimal 2-ECSS of G that has no 3-yles.Proof. The following proedure an be used to re-move any 3-yles from an optimal 2-ECSS (Opt)without inreasing its ardinality. Suppose it has a3-yle xyzx. Sine all edges of Opt must be ritial,the removal of the 3 edges of this 3-yle must breakup Opt into three onneted omponents, with ex-atly one of fx; y; zg in eah omponent. Otherwise,if for example, x and y are in the same omponent,we an �nd 3 paths between x and y, and thereforethe edge (x; y) is redundant, ontraditing the min-imality of Opt. Sine the graph has no ut verties,there must be an edge e in G that onnets the om-ponent ontaining x to one of the other omponents,say y's omponent. In this ase, adding e and remov-ing (x; y) gives an optimal 2-ECSS of G that has onefewer 3-yle than Opt.Proposition 3.2. Let G = (V;E) be a graph de�nedon n � 4 verties, with no ut verties. Let H be amaximal 3-yle-free 2-mathing of G, onsisting ofa olletion of yles C and a set of paths P . Let Optbe the ardinality of an optimal 2-ECSS of G. ThenOpt � n+ jP j.



Proof. A simple ounting argument shows that jH j =n � jP j. Sine H is maximal and n is �xed, P isminimal for a 3-yle-free 2-mathing.Proposition 3.1 showed that G has an optimal 2-ECSS that does not have any 3-yles. Consider anear deomposition of suh an optimal solution. Let ebe the number of its ears. Therefore Opt = n+ e�1.Sine it is a minimal solution, it has no trivial ears(with just one edge). Deleting the �rst and last edgeof eah ear gives us a 2-mathing with 1 yle ande � 1 paths. Sine we started with a 3-yle-freeoptimal solution, we get a 3-yle-free 2-mathing.As observed earlier, the number of paths is minimalin H and therefore, jP j � e � 1. Therefore, Opt =n+ e� 1 � n+ jP j.3.1 Charging strategy. Sine our goal is to getan algorithm whose ratio is 5/4, we an use up to54 (n+ jP j) edges. We split this into two parts. Eahvertex is given a harge of 5/4, alled its vertexharge. Eah path in P is also given a hargeof 5/4, alled its path harge. As the algorithmbuilds a solution, it has to pay for the edges througha ombination of vertex and path harges. Ourharging strategy has been adopted from the workof Krysta and Kumar [17℄.With C and P on hand, we build a DFS tree ofG using the following strategy. When the �rst nodex1 of a yle X 2 C, where X = fx1; x2; : : : ; xkg,is disovered, we will make the DFS go through thenodes of the yle in sequene until it reahes the endof the yle. Upon reahing a leaf node, we take thesubgraph indued by the last 7 nodes and see if thereis a di�erent way of traversing them suh that thenew leaf vertex is adjaent to an unvisited vertex. Ifsuh a reorganization is possible, we do so, and theDFS is able to ontinue further. Later we will showthat we need to look for spei� on�gurations, andhene this searh for a path in the 7-node induedsubgraph an be done eÆiently.When a path Y 2 P is enountered by DFS, itis not neessary that the initial node enountered bean end vertex of the path. We use the following ideafrom [17℄ to handle paths, with a minor modi�ation.If DFS enters Y at one of its end verties, then it goesthrough the verties of the path in that sequene.That segment of the DFS tree inherits the 5/4 pathharge of Y . On the other hand, if a node in themiddle of Y is enountered, we have the option ofgoing in either diretion to one of the ends of thepath. The DFS hooses to searh the segment ofY that is longer, and alloate the 5/4 path hargeto the smaller, unexplored segment, whih is alled

the residual segment of Y . Indutively, there is oneresidual segment Y 0 � Y that may still be unexploredwith a path harge of 5/4. One exeption to thismethod is when the DFS reahes the middle of aresidual path of 8 nodes, and the longer segment has5 nodes. In this ase alone, we go the other way,expanding the DFS tree by 4 nodes and leaving aresidual segment of 4 nodes. Whenever we onsumea path segment of 5 nodes in the DFS tree, we assignthat segment a path harge of 1/4.When a residual segment gets small, we partitionthe available path harge to both segments to ensurethe following. Eah segment of three nodes or �venodes is alloated a path harge of 1/4, two nodesa harge of 1/2 and a singleton node a harge of3/4. These path harges will be used to aount foredges when a branh of the DFS tree has fewer than 4nodes. The reason behind alloating a harge of 1/4to path segments of 5 nodes will be disussed later.Sine the 2-mathing solution that we used has no 3yles, branhes with fewer than 4 nodes an only bepath segments.Proposition 3.3. The sheme desribed above dis-tributes path harges as follows: 5-node and 3-nodesegments of a path reeive at least 1/4 eah, 2-nodesegments reeive at least 1/2 eah, and 1-node seg-ments reeive at least 3/4 eah.We break the DFS tree into a sequene of pathsin a natural way. The �rst path starts at the root andgoes down to the �rst leaf enountered. Every timethe DFS �nds an unvisited vertex and starts a newsearh, we start building a new path that extends upto the �rst leaf node enountered by it. Let these DFSpaths be D1; D2; : : : ; Dp. We will proess the pathsone at a time and 2-onnet eah path by addingarefully hosen bak edges. Seleted edges of thepaths will be dropped in some ases. We will showthat we an 2-onnet eah path using the vertexharge of 5/4 reeived by eah vertex plus any pathharge it may have been alloated.3.2 Additional operations. In general, ourstrategy is to try to onstrut large yles startingat a leaf. Some on�gurations are diÆult to han-dle and we introdue additional operations that willenable our algorithm to avoid these diÆult ases.Cyle shrinking: During the ourse of thealgorithm, we may �nd a yle C of 5 or more edgesfor whih we are able to prove that Opt uses at leastjCj � 1 edges within the subgraph indued by C. Insuh ases, we shrink the yle C into a single nodeand solve the resulting problem reursively, and then



add C to its output. It is easy to show that thissheme works as long as jCj � 5 [19℄. We all thisoperation as Shrink(C). We extend it to shrinkinga larger 2-onneted subgraph of G as follows. Let Sbe a set of 11 nodes that an be 2-onneted using 12edges (using 2 ears). If we an prove that any 2-ECSSof G ontains at least 10 edges within the subgraphindued by S, then we an apply the above shrinkingstrategy to S and reursively solve the problem andstill manage to get a 5=4 approximation ratio.Lemma 3.1. Let G = (V;E) be a 2-edge-onnetedgraph that has neither ut verties nor beta vertiesand pairs. Suppose there is a subset C � V of nodesfor whih it is possible to prove that any 2-ECSS ofG ontains at least jCj � 1 edges within the induedsubgraph of C, and jCj � 5. Suppose there existsa subgraph that 2-onnets the nodes of C using atmost jCj + j jCj�54 k edges. Then we an shrink Cand solve the 2-ECSS problem and still ahieve anapproximation ratio of 5/4.Proof. Suppose we take an optimal 2-ECSS, Opt, andshrink C into a single node, then we get a 2-onnetedgraph that has jV j � jCj + 1 nodes and at mostOpt�jCj+1 edges. Suppose we �nd a 2-ECSS of theshrunken graph using a 5/4 approximation algorithm.The solution returned has at most 54 (Opt � jCj + 1)edges. We now expand the nodes of C and addthe subgraph that 2-onnets C to it. We get a 2-onneted subgraph of G that has at most54�Opt� jCj+ 1�+ jCj+ j jCj � 54 kedges, whih is at most 54Opt.Donation: In ertain ases, when we are pro-essing a path D, if one of its nodes, v, has a hild in the DFS tree outside D, i.e.,  would be the rootof a path Dk for some k > i, (see Figure 1(a)), wemay 2-onnet all nodes of D exept v. The pathDk will be extended to inlude v (see Figure 1(b)),and in this ase, we say that D donates v to Dk. Ifit so happens that Dk is a path of 4 nodes, then wewould have to provide an extra harge of 1/4 to Dk,sine we assumed that all 5-node path segments havea path harge of 1/4 available, unless it ame from a5-yle. We will show that when D donates a singlevertex v, it has exess harge available, and thereforegives to Dk a harge of 1/4 from its exess.Plunder: Consider an edge (u; v) 2 C, where Cis a yle that we are urrently onstruting from theleaf node of a path D. Suppose u has an unproesseddesendant d that is part of a path Dk 6= D, suh
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Figure 1: Donation and plunderingthat there is some bak edge (d; v) (see Figure 1()).In this ase, we an replae the edge (u; v) by a pathfrom u to v through d (see Figure 1(d)). We referto this operation as a plunder. During a plunder, weaount for the vertex harges in the following way.We an show that if Dk either has at most 4 nodes oris a 5-node yle, then all its verties are plundered.Otherwise, we guarantee that at least 4 nodes areplundered from Dk. If p nodes are plundered fromDk by u, they have a vertex harge of 5p=4 available,out of whih u keeps p+ 1=2 and returns the rest toDk as path harge alloated to Dk by the plunderer.This allows enough harge to 2-onnet the left overnodes in Dk. Note that in ase Dk originally had 5nodes, and only one node is left after the plunder,then it still has a vertex harge of 5/4, an alreadyavailable path harge of 1/4, and a path harge of3/4 left by the plunderer, whih together aounts for2 edges that will be needed to 2-onnet this singlenode to the ore. Also, D has gained a harge of 1=2,whih is the equivalent of having two extra nodes init. For nodes of any other Dx in the path from uto Dk, we ensure that the e�etive path length of Dxstays the same. For eah node that u takes away fromDx, it takes away only 1 out of the 5/4 vertex hargeavailable and it leaves behind a path harge of 1=4 toDx. Due to this aounting method, after plundering,the e�etive length of C is equal to the number ofnodes in it from D plus two orresponding to the1/2 it gained from Dk. In addition, paths whihlost nodes due to a plunder have extra quarters toompensate their loss, and therefore, when we 2-onnet them, we an at as if they still have theiroriginal length.3.3 More details. We �rst start by 2-onnetingD1, the �rst path in the DFS tree. We will tryto build an ear deomposition of the nodes of D1,



starting from the leaf. One the ear deompositionreahes the root vertex, all but the donated vertiesof D1 are two-onneted, whih we will all as the\ore". We then proeed iteratively as follows. Outof the remaining paths, we selet the path D whosehead is visited earliest by DFS and 2-onnet theirnodes to the ore using the same ideas. Note thatthe paths may be proessed in a order di�erent thanD2; : : : ; Dk sine donations and plunders a�et theorder in whih the paths are onsidered. Sine thereare no ross edges with respet to a DFS tree, we areable to 2-onnet them one path at a time. At the endof the sequene, we get a solution that is 2-onnetedand, in fat, we ompute an ear deomposition of thesolution in whih most ears ontain at least 4 newnodes. There may be a few smaller ears generated byresidual segments with three or fewer nodes, and weaount for their edges by ombining vertex hargesand path harges. Sine the paths D are generatedby DFS, non-tree edges of G are all bak edges.We will show the following through a sequene oflemmas:� Lemma 4.1 shows how to �nd a 5-yle startingat the leaf of a given path D.� Lemma 4.3 shows how to extend it to a 6-yle.� Lemma 4.5 shows how to extend it to a 7-yle,donating nodes in some ases.In all ases, if the path does not have enough nodes,then we will �nd a single yle that inludes all nodes.If ertain on�gurations arise, then we will �nd ayle C in whih Opt must use at least jCj � 1 edgeswithin C, or a 11 node set whih an be 2-onnetedusing 12 edges within whih Opt must use at least 10edges. In these situations, we shrink the nodes intoa single vertex and solve the problem reursively.We now desribe how our algorithm 2-onnetsa DFS path D to the ore. The behavior of ouralgorithm depends on the e�etive length of the path,whih is the original number of verties in it plus anyverties that may have been donated to it. Reallthat when a path gets plundered and loses verties,it gets to keep a 1/4 for eah vertex that it loses,e�etively maintaining the same length.jDj � 3: Paths with less than 4 verties are eitherpath segments or paths that lost verties in a plunder,sine we don't have 3-yles in our initial 2-mathingthat guides the DFS. As mentioned in our hargingstrategy, when jDj � 3, then D has a path hargeof (4� jDj)=D. We are able to 2-onnet D using asingle ear whih an be paid using vertex and pathharges.

jDj = 4 or 5: A single ear that extends from theore through all the verties of D is onstruted. Theedges are paid using the vertex harges of D.jDj = 6 or 7: A single ear that extends fromthe ore through all the verties of D is onstruted.One of the verties may be donated in this step. Theedges are paid using the vertex harges of the vertiesof D in the single ear. If suh an ear annot beonstruted, we show that we an all Shrink(D).The proof for ases jDj = 6 or 7 is similar to theproof of Lemma 4.5 and is not inluded due to lakof spae.jDj = 8: First we �nd a yle of length at least5 starting at the leaf node. We then shrink this yleinto a single vertex, and �nd a single ear (ontainingat most 5 edges) starting at the ore that inludes allthe nodes. Together at most 2 ears are used, and theedges an be paid using vertex harges.jDj = 9 or 10: Find a yle of length at least 6starting at the leaf. Shrink the yle and onnet theremaining nodes to the ore using a single ear.jDj = 11: Find a yle of length at least 6starting at the leaf. Try to extend the yle usingmethods of Lemma 4.5. If suessful, shrink yleand 2-onnet the nodes using another ear. In someof the ases, we will donate up to 3 nodes to otherpaths, thus shrinking the length of D. We an then2-onnet the remaining nodes using one of the earlierases. Otherwise we will show that any 2-ECSS hasat least 10 edges in the subgraph indued by D andtherefore all Shrink(D).jDj = 12: It is easy to extend the method usedfor jDj = 8 to any multiple of 4 by 2-onneting Dusing jDj=4 ears as follows. Find a 5-yle from theleaf, shrink and reurse.jDj > 12: We �nd a yle with 6 or more edgesfrom the leaf, shrink it into a single node and repeatthe proess two more times. If there are any nodesleft in D, �nd a yle of length 5 or more, until allnodes of D (exept donated nodes) are 2-onnetedto the ore.4 Growing a yle from the leafWe now state and prove several interesting and usefullaims. In the following, when we say a bak edgerosses a node v, we mean that there is a bak edgein G that onnets a proper desendant of v to aproper anestor of v. A node x rosses (an anestor)v if either there is a bak edge (x; y) rossing v or ifthere is a bak edge (d; y) that rosses v, where d is adesendant of x through a hild  not in the urrentpath D. In suh ases, if (x; y) 62 E, then we will adda virtual edge (x; y) when we seek to grow a yle.



One we have identi�ed the set of ears with whihwe 2-onnet the nodes of vi to the ore, we replaeall the virtual edges by plundering the orrespondingtree path from x to d and the bak edge (d; y). Sined is a desendant of x through a hild  that is notin D, the paths added to replae the virtual edgesare all disjoint from eah other. Therefore, in thefollowing disussion, we will treat virtual edges thesame as the real edges of G. Hene we will assumethat if x rosses v, then there is a bak edge (x; y)that rosses v. In addition, we will treat the ore asan extra vertex (labeled as vq below) that is added tothe end of the path, but the ore does not have anyharges available to pay for any edges.4.1 Finding a 5-yleLemma 4.1. Let D be a DFS path whose verties arelabeled v1; v2; :::; vq starting from the leaf vertex. Itis possible to �nd a yle that inludes all verties infv1; v2; : : : ; vkg for some k � min(q; 5). The ylemay inlude plundered segments from the heads ofunproessed paths.Proof. We show that a yle of �ve or more vertiesan be formed based on one of the following ases.Observe that v1 is a leaf vertex in the DFS tree andtherefore has no hildren. The only edges from v1other than the tree edge (v1; v2) are bak edges.Case 1: The farthest bak edge from vertex v1 is(v1; vk), 4 < k � q. Form the yle v1 : : : vkv1.
v1 v2v3v1 v2v3v4v5vk v4v5vk (b)(a)Figure 2: Lemma 4.1: Case 2Case 2: The farthest bak edge from vertex v1is (v1; v4). In order that vertex v4 is not a utvertex, either v2 or v3 (or both) must ross v4.If v3 rosses v4 with edge (v3; vk), then form theyle v1v2v3vk : : : v4v1 (see Figure 2 (a)). Otherwiseif only v2 rosses v4, then the edge (v1; v3) mustexist, sine without it, the removal of v2 and v4generates three omponents | fv5; : : : ; vqg, fv3g,and fv1g, whih makes v1 and v3 beta verties.Observe that v3 annot have a hild  other thanv2, sine in that ase we would then have ontinued

the DFS as v4; v1; v2; v3; ; : : : instead of aeptingv1 as a leaf vertex. Hene, we an form the ylev1v2vk : : : v4v3v1 (see Figure 2 (b)).
(a) (b)

vjv4v5 v3v2v1 v1 v2v3vkv5v4
Figure 3: Lemma 4.1: Case 3Case 3: The farthest bak edge from vertex v1is (v1; v3). As in the previous ase, v2 must rossv3, sine otherwise v3 would be a ut vertex. If thefarthest bak edge from v2 lands on vj with j > 4,then form the yle v1v2vj : : : v3v1 (see Figure 3 (a)).Otherwise, if the farthest bak edge from v2 onlyreahes v4, then v4 threatens to be a ut vertex. Theonly possibility is that v3 must ross v4 with a bakedge that lands on vk, k > 4. In this ase, we formthe yle v1v2v4 : : : vkv3v1 (see Figure 3 (b)).The above lemma an be extended to the asewhen vertex v1 is not a single node of G, but a 2-onneted omponent that has been shrunk into asingle node. Sine the algorithm works by repeatedly�nding a yle starting from the leaf and shrinkingit into a single node, it is neessary to prove anextended version of Lemma 4.1. The proof is moreompliated we an no longer use the fat that ertainnodes annot have neighbors outside the urrent pathbeause the algorithm reorients the last few nodes ofa path if that allows it to be extended further. Weare able to prove the lemma by introduing donationsand plunders in arefully seleted plaes. There aremany di�erent ases to onsider, and we omit theproof here due to lak of spae.Lemma 4.2. Let D be a DFS path labeled as inthe previous lemma, v1; : : : ; vq. The leaf node v1represents a 2-onneted omponent formed by a setof ears starting at the original leaf of D, and vqis the ore. We an �nd a yle that inludes allverties in fv1; v2; : : : ; vkg for some k � min(q; 5).At most one vertex is donated, and the yle mayinlude plundered segments from the heads of pathsonsidered after D.4.2 Finding a 6-yle. We now show that theoperations in Lemma 4.1 an be ontinued furtherto �nd a yle of length 6 or more.



Lemma 4.3. Let D be a DFS path ontaining at least7 nodes, labeled as in the previous lemma. It is eitherpossible to �nd a 5-yle C on whih we an allShrink(C) or to �nd a yle that inludes all vertiesin fv1; v2; : : : ; vkg for some k � 6. As before, theyle may inlude plundered segments from the headsof paths onsidered after D.Proof. By Lemma 4.1, we an �nd a yle throughverties v1 to v5. If this yle also inludes vertexv6, we are done. Otherwise, we show how to extendthe yle further based on one of the following ases.We onsider a ase only if all the previous ases havefailed.To prevent v5 from being a ut vertex, at leastone of the verties fv1; v2; v3; v4g must ross v5. Inall ases below, let the bak edge that rosses v5 landon vk, k > 5.Case 1: v1 and/or v4 an ross v5. In this ase,we expand the yle by taking either v1 : : : vkv1 orv1v2v3v4vk : : : v5v1.
v1 v1vkv6v5 v4v3v2 v2 v3 v4v5v6vk
Figure 4: Lemma 4.3: Case 2Case 2: edge (v1; v4) exists. Either v2 or v3rosses v5. In this ase, we expand yle by takingeither v1v4v3v2vk : : : v5v1 or v1v2v3vk : : : v5v4v1 (seeFigure 4).Case 3: (v1; v4) 62 E. Neither v1 nor v4 anhave any hildren outside the urrent path D, sineotherwise, the path would have been extended toinlude that vertex by reorienting the path, makingv1 or v4 as the last vertex of the path, making itfurther extensible by DFS. Therefore, sine (v1; v4) isnot an edge, any 2-onneted solution must have atleast 4 edges inident to fv1; v4g and all these edgesare only within C = fv1; v2; v3; v4; v5g. In otherwords, there are at least 4 edges within C in anyoptimal solution. Therefore we an shrink C into asingle node and reurse by alling Shrink(C) (with5/4 as the target ratio).We now state the extended version of the abovelemma. It is similar to Lemma 4.2. In somesituations, we shrink a set of verties in whih weare able to prove that any 2-ECSS must inlude at

least jCj � 1 edges. Up to three edges are donated inthe proess of �nding a yle.Lemma 4.4. Let D be a DFS path labeled as inthe previous lemma, v1; : : : ; vq. The leaf node v1represents a 2-onneted omponent formed by a setof ears starting at the original leaf of D, and vq isthe ore. It is either possible to �nd a set of nodes Con whih we an all Shrink(C) or to �nd a ylethat inludes all verties in fv1; v2; : : : ; vkg for somek � min(q; 6). At most three verties are donated,and the yle may inlude plundered segments fromthe heads of paths onsidered after D.4.3 Finding a 7-yle. We now onsider the asewhen jDj = 11. Combining the vertex harges ofall these nodes gives us a total of 13 3/4. Thereforein order to get a ratio of 5/4, we need to try to 2-onnet D to the ore (whih an be viewed as a12th vertex) using at most 13 edges, i.e., using atmost 2 ears. We will show how to proess D suhthat we will either 2-onnet D to the ore using atmost 2 ears, or �nd a way to donate at least one node,and up to three nodes, to unproessed paths so thatthe remaining nodes of D an be 2-onneted to theore easily using up to two ears, or show that we anshrink D by proving that any 2-ECSS must ontainat least 10 edges in the indued subgraph of D.Lemma 4.5. Let D be a DFS path ontaining 11nodes, labeled v1; : : : ; v11; v12, where v12 is the ore.It is possible to do at least one of the following:� 2-onnet D to the ore using 3 ears if it has apath harge of 1/4 or more available.� 2-onnet D to the ore using at most 2 ears,donating at most 3 nodes to other paths that arestill unproessed by the algorithm.� Find a set of nodes C suh that C satis�es theonditions stated in Lemma 3.1.As before, the yle may inlude plundered segmentsfrom the heads of paths onsidered after D.Proof. By Lemma 4.3, we an �nd a yle throughverties v1 to v6. If this yle also inludes vertexv7, we are done. Otherwise, we show how to extendthe yle further based on one of the following ases.We onsider a ase only if all the previous ases havefailed. Note that if we sueed in extending the yleto be of length 7 or more, then we an 2-onnet Dby shrinking the 7-yle into a single node and then�nding a yle through the six or fewer remainingnodes (inluding the ore).



To prevent v6 from being a ut vertex, at leastone of the verties fv1; v2; v3; v4; v5g must ross v6.In all ases below, let the bak edge that rosses v6land on vk, k � min(q; 7), and let it be a bak edgethat goes farthest up the tree.Case 1: v1 and/or v5 an ross v6. The yle isextended to either v1 : : : vkv1 or v1 : : : v5vk : : : v6v1.vkv7 v5v4v2 v3 v2 v3 v4v1v1 vkv6v7 v5v6
Figure 5: Lemma 4.5: Case 2Case 2: v2 or v4 an ross v6 and (v1; v5) 2 E.The yle is extended to either v1v5v4v3v2vk : : : v6v1or v1v2v3v4vk : : : v6v5v1 (see Figure 5).Case 3: only v3 rosses v6 and (v1; v5) 2 E.Observe that nodes v2 and v4 an have no hildren inthe DFS tree, beause for example, if v2 had a hild ,then the algorithm would have reordered the urrentpath to be vq ; : : : ; v6; v1; v5; v4; v3; v2 so that the DFSan be further extended to  from v2. Therefore thenodes fv1; v2; v4; v5g have no edges that go out ofthe hexagon, and therefore there are at least 5 edgesinident to them in any feasible solution to 2-ECSS.Hene, we an shrink the hexagon H = fv1; : : : ; v6gin this ase and all Shrink(H).Case 4: only v3 rosses v6 and (v1; v5) 62 E.Nodes v1 and v5 have no neighbors outside thehexagon H = fv1; : : : ; v6g as explained in ear-lier ases. If (v1; v4) 2 E, then expand yle tov1v2v3vk : : : v6v5v4v1 (see Figure 6 (a)). If (v2; v5) 2E, then expand yle to v1v2v5v4v3vk : : : v6v1 (seeFigure 6 (b)). If (v3; v5) 2 E, then we ould havereordered the path as vq ; : : : ; v6; v1; v2; v3; v5; v4, andtherefore v4 has no neighbors outside the urrentpath. Therefore in this ase, any 2-ECSS must haveat least 5 edges inident to fv1; v4; v5g, and hene weall Shrink(H).We have onsidered all possible neighbors for v5.If v5 is a degree-2 node, then v4 does not have a hild other than v3, beause, sine v4 is not a ut vertex,there must be a bak edge from a desendant of  thatgoes farther than v4. The bak edge annot land onv5 beause v5 has no neighbors outside H , nor anthe bak edge land on any vertex beyond v6, sinein this ase v4 rosses v6. Therefore any bak edgesan only land on v6 and this makes v5 a beta vertex
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Figure 6: Lemma 4.5: Case 4on the removal of v4 and v6 (the third omponent isthe subtree with  as the root). If v2 has no hildother than v1, then we an all Shrink(H), sinethere must be at least 5 edges inident to fv1; v2; v5gin any 2-ECSS.In the only remaining possibility, let  be a hildof v2 outside H . By arguing that the graph hasno ut verties as in Case 3 above, at least one ofthe following yles exists; if needed, v2 and v1 aredonated to .� Replae (v2; v3) by plundering .� v5v4v3vk : : : v8v7v6v5 (see Figure 6 ()).� v5v4v3v8 : : : vyv7v6v5 (see Figure 6 (d)).� v5v4v3v7v8 : : : vxv6v5 (see Figure 6 (e)).� v5v4v3v7vy : : : v8v6v5 (see Figure 6 (f)).� Call Shrink(H).Case 5: only v4 rosses v6. If v5 has no otherneighbors in G, it will be a beta vertex. As notedearlier, v5 annot have any hildren other than v4.



v7vkv6v1 v2 v3v4v5
Figure 7: Lemma 4.5: Case 5Therefore at least one of the edges (v1; v5), (v2; v5),or (v3; v5) must exist. Edge (v1; v5) is overed underCase 2. If (v3; v5) exists, then we expand the yleto v1v2v3v5v4vk : : : v6v1 (see Figure 7). The onlyase left to onsider is when edge (v2; v5) exists.In this ase v3 has no neighbors outside the pathbeause the algorithm would rearrange the pathas vq ; : : : ; v6; v1; v2; v5; v4; v3 and extend the pathfurther. Hene there are at least 5 edges inidentto fv1; v3; v5g in any 2-ECSS, and therefore we allShrink(H).Case 6: only v2 rosses v6. This ase is symmet-ri to Case 5 above.Case 7: At least two onseutive nodes in the setfv2; v3; v4g have bak edges that ross v6. We willdisuss the ase when we have bak edges (v2; vw) and(v3; vx). The other ases will be handled similarly. Ifw = 12 (i.e., v2 has a bak edge to the ore), thenwe an 2-onnet D using 2 ears: v12v2v1v6 : : : v12followed by v2v3v4v5v6. The ase x = 12 is similar.For the rest of this ase, we assume that anybak edge from fv2; v3; v4g lands within the pathv7 : : : v11. If there is a bak edge from v2 to v7,then we expand the yle to v1v2v7 : : : vxv3v4v5v6v1.Also, if v7 has a bak edge to the ore, we an 2-onnet D using 2 ears: v12v7v8v9v10v11v12 followedby vwv2v1v6v5v4v3vx. Also, if (v7; v11) 2 E, then alsowe an 2-onnet D with 2 ears either by expandingthe 6-yle as in the previous ase by replaing(v2; v3) by v2vw : : : vxv3 and then onneting theremaining nodes with another ear, or by �nding a�rst ear that starts at the ore and inludes all nodesof the 6-yle and then onnet the remaining nodesusing a seond ear.If any of the verties fv2; v3; v4; v7; vw�1; vx�1ghas a hild outside D, then we an donate up to3 nodes and 2-onnet the remaining nodes using 2ears. For example, if v3 has a hild , then we donatefv3; v4; v5g to  and use the yle v1v2vw : : : v6v1 asthe �rst yle and we an 2-onnet the 8 remainingnodes in the path using at most two ears.If three or more nodes in v7; : : : v11 have bak

edges to the ore, then we an 2-onnet D using twoears. On the other hand, if at most two nodes of Dare onneted to the ore, and the other nodes do nothave any neighbors outside D, then any 2-ECSS of Ghas at least 10 edges within the subgraph indued byD, and we an shrink D into a single vertex (and wean 2-onnet D using at most 11 edges).vwv7v6v1v2 v3 v4v5 vxv7v6v1 v2 v3v4v5
(a) (b)Figure 8: Lemma 4.5: Case 8Case 8: only v2 and v4 ross v6. Let thefarthest bak edge with whih v2 rosses v6 landon vw, and the orresponding bak edge for v4land on vx. If edge (v1; v3) exists, then expandyle to v1v2vw : : : v6v5v4v3v1 (see Figure 8 (a)).If edge (v3; v5) exists, the expand the yle tov1v2v3v5v4vx : : : v6v1 (see Figure 8 (b)). The asewhen edge (v1; v5) exists was already onsidered inCase 2. If fv1; v3; v5g form an independent set, withnone of the verties onneted to a node outside thehexagon, then all 6 edges of the hexagon are neededin any 2-ECSS solution, and therefore we an shrinkthe hexagon and we all Shrink(H). The only aseleft is when node v3 has a neighbor outside H . Thisan happen when there is a bak edge from a desen-dant of v2 that has a bak edge to v3. In this ase,we replae (v2; v3) by a path using the plunder oper-ation. On the other hand, if v3 has a hild  outsideH , then we donate either fv3; v4; v5g or fv3; v2; v1g to depending on whether w < x or not, and 2-onnetthe remaining nodes using two ears.5 SummaryIn summary, our algorithm uses a 3-yle-free maxi-mal 2-mathing to selet a suitable depth-�rst searhtree of the graph. The DFS tree is broken into a ol-letion of paths and we 2-onnet the paths one ata time. We aount for edges by a harging methodwhere we try to pay using vertex harges wheneverpossible and show that when we need extra, thenpath harges are available to over the de�it. Weintrodued new operations of donation and plunder-ing to handle some inonvenient on�gurations. For a



graph, the algorithm either shrinks a subset of nodesC (by alling Shrink(C)) when we are able to provethat at least jCj � 1 edges are neessary within Cin any 2-ECSS, or �nds a solution that uses at most54 (n + jP j). A more preise statement of when weapply Shrink(C) is stated in Lemma 3.1.Theorem 5.1. Given a 2-edge-onneted, undiretedgraph G = (V;E), there is a polynomial-time algo-rithm that returns a 2-ECSS of G that is within 5=4of an optimal 2-ECSS.Instead of using a 3-yle-free 2-mathing, if anarbitrary maximal 2-mathing is used, then it an beshown that the performane ratio of our algorithm isat most 21=16 = 1:3125.6 Vertex onnetivityReently, we have identi�ed how to extend our algo-rithm to 2-VCSS. There are several issues to solve.First, we need to show how Shrink(C) is handledfor vertex onnetivity. Also, we shrink yles whenthey get large enough during the ourse of the al-gorithm. It needs to be shown that edges an bearefully hosen suh that the resulting graph is 2-vertex-onneted. In fat, in ertain examples, extraedges need to be added when we expand C after all-ing Shrink(C), and in these ases we are able toshow that Opt is also bigger. Also, when we seletedges inident to the ore, we need to ensure thatboth edges that 2-onnet a path D are not inidentto the same vertex of the ore (i.e., we need to getan open ear deomposition). More details of the fol-lowing theorem will be provided in the full version ofthe paper to be made available soon.Theorem 6.1. Given a 2-vertex-onneted, undi-reted graph G = (V;E), there is a polynomial-timealgorithm that returns a 2-VCSS of G that is within5=4 of an optimal 2-VCSS.Referenes[1℄ J. Cheriyan, A. Seb}o, Z. Szigeti, Improving on the1.5 approximation of a smallest 2-edge onnetedspanning subgraph, SIAM J. Disret. Math., 14,pp. 170-180, 2001.[2℄ J. Cheriyan, S. Vempala and A. Vetta, Approxima-tion algorithms for minimum-ost k-onneted sub-graphs, Pro. of the 34th ACM Symposium on theTheory of Computing (STOC), 2002.[3℄ J. Cheriyan and R. Thurimella, Approximatingminimum-size k-onneted spanning subgraphs viaMathing, SIAM J. Comput., 30, pp. 528-560, 2000.
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