Improved Approximation Algorithms for the
Single-Sink Buy-At-Bulk Network Design
Problems

Raja Jothi and Balaji Raghavachari

University of Texas at Dallas, Richardson, TX 75083, USA
{raja, rbk}@utdallas.edu

Abstract. Consider a given undirected graph G = (V, E) with non-
negative edge costs, a root node r € V, and a set D C V of demands
with d, representing the units of flow that demand v € D wishes to send
to the root. We are also given K types of cables, each with a specified
capacity and cost per unit length. The single-sink buy-at-bulk (SSBB)
problem asks for a low-cost installation of cables along the edges of G,
such that the demands can simultaneously send their flows to sink/root r.
The problem is studied with and without the restriction that the flow
from a node must follow a single path to the sink (indivisibility con-
straint). We are allowed to install zero or more copies of a cable type on
each edge. The SSBB problem is NP-hard. In this paper, we present a
145.6-approximation for the SSBB problem improving the previous best
ratio of 216. For the divisible SSBB (DSSBB) problem, we improve the
previous best ratio of 72.8 to a i, where ax is less than 65.49 for all K.
In particular, az < 12.7, a5 < 18.2, a4 < 23.8, a5 < 29.3, ap < 33.9.

1 Introduction

Consider a given undirected graph G = (V, E) with non-negative edge costs, a
root node r € V, and a set D C V of demands with d,, representing the units of
flow that demand v € D wishes to send to the root. We are also given K types
of cables, each with a specified capacity and a cost per unit length. The cost
per unit capacity per unit length of a high-capacity cable is typically less than
that of a low-capacity cable, reflecting “economy of scale”. In other words, it is
cheaper to buy a cable of larger capacity than many cables (adding up to same
capacity) of smaller capacity. The extensively studied single-sink buy-at-bulk
(SSBB) problem, also known as the single sink edge Installation problem, asks
for a low-cost installation of cables along the edges of GG, such that the demands
can simultaneously send their flows to sink/root r, under the restriction that the
flow from a node must follow a single path to the sink (indivisibility constraint).
We are allowed to install zero or more copies of a cable type on each edge. By
divisible SSBB (DSSBB) problem, we refer to the version of the SSBB problem
without the indivisibility constraint.

The SSBB problem has applications in the hierarchical design of telecommu-
nication networks, in which the traffic from a source must follow a single path

to the sink. The DSSBB problem has its own applications: a classic application
would be that of routing oil from several oil wells to a major refinery [8].

The buy-at-bulk network design problem was introduced by Salman, Cheriyan,
Ravi and Subramanian [8]. They showed that the problem is NP-hard, by show-
ing a simple reduction from the Steiner tree problem or the knapsack problem.
The problem remains NP-hard even when only one cable type is available. They
also presented a O(logn)-approximation algorithm for the SSBB problem in Eu-
clidean graphs. For problem instances in general metric spaces, Awerbuch and
Azar [1] presented a O(log® n)-approximation algorithm. Their algorithm works
even for multi-root version of the problem. Bartal’s tree embeddings [2] can
be used to improve their ratio to O(lognloglogn). Garg et al. [3] presented
an O(K)-approximation algorithm based on LP-rounding. Guha, Meyerson and
Munagala [4] presented the first constant-factor approximation algorithm, whose
ratio was estimated to be around 2000 by Talwar [9]. In the same paper, Talwar
presented an LP-based rounding algorithm with an improved ratio of 216.

Recently, Gupta, Kumar and Roughgarden [5] presented a simple and elegant
72 .8-approximation algorithm for the SSBB problem. But unfortunately, their
approach does not guarantee that the flow from a node follow a single path to
the sink. In other words, their ratio of 72.8 holds for the DSSBB problem, but
not for the SSBB problem. That leaves Talwar’s ratio of 216 as the current best
for the SSBB problem.

In this paper, we design a 145.6-approximation algorithm for the SSBB prob-
lem, using ideas from Gupta, Kumar and Roughgarden [5], but guaranteeing the
indivisibility constraint is not straightforward. We introduce a new “redistribu-
tion” procedure which is pivotal in guaranteeing that the flow from a source
follows a single path to the sink. We also propose a modification to their DSSBB
algorithm that reduces the ratio from 72.8 to ax, where ag is less than 65.49
for all K. In particular, as < 12.7, a3 < 18.2, aq < 23.8, a5 < 29.3, ag < 33.9.

2 Preliminaries

Let G = (V, E) be the input graph with D C V being the set of demands. We
use the terms vertices and nodes interchangeably. Also, depending up on the
context, we use the term “demand” to denote a vertex or the flow out of it. Let
ce denote the length of edge e. We also use czy to denote the length of an edge
connecting nodes z and y. We use the metric completion of the given graph. Let
u; and o; denote the capacity and cost per unit length of cable type ¢. We define
d; = 0;/u; to be the “incremental cost” of using cable type i. The value of §; can
also interpreted as the cost per unit capacity per unit length of cable type ¢. Let
us assume that each u; and o; (and by definition J;) is a power of 1 + ¢, € > 0,
which can be enforced by rounding each capacity u; down to the nearest power
of 1 + ¢, and each ¢; up to the nearest power of 1 4+ ¢. This assumption is not
without loss of generality, and can be accounted by losing a factor of (1 +¢)? in
the approximation ratio. We will choose € later. This idea of rounding is derived
from [5], where they used powers of 2, thus effectively choosing ¢ to be 1.

The following properties on the costs and capacities of cable types have been
known [4,5]. Without loss of generality, assume that the cables are ordered such
that u; < u; and o; < o for all + < j. Note that if u; < u; and o3 > o0j,
then we can eliminate cable type ¢ from consideration. We can also assume that
u; = o1 = 1, as this can be obtained by appropriate scaling, though it may leave
non-integer weights at vertices. For each j < k,

LSS (1)
Uk Uuj
Otherwise, cable type k can be replaced by ux/u; copies of cable type j without
increase in cost. The fact that §; = o;/u; is a power of 1 + ¢ implies that §;41 <
8; /(1 +¢) for all j, since ujy1 > (14 €)uj. Let gp = Zuy. By equation (1),

Ok

l=u < g1 <us < gs<...<ug < gg = 00.
Since o; is a power of 1 + € for any 7, and ;41 > 0}, using equation (1) we get,

Yitl >1+e.
Uj
Let OPT denote an optimal solution with cost C* = Zj C*(4), where C*(j)
is the amount paid for cable type j in OPT. We state the following lemma and
its proof from [5], as its understanding is crucial for an easier understanding of
our algorithms.

Lemma 1 (Redistribution Lemma [5]). Let T be a tree rooted at r with each
edge having capacity U. For each verter j € T, let w(j) < U be the weight located
at j with Zj w(j) a multiple of U. Then there is an efficiently computable (ran-
dom) flow on the tree that redistributes weights without violating edge capacities,
so that each vertez receives a new weight w'(j) that is either 0 or U. Moreover,

Pr [w'(j) =U] = w(j)/U

Proof. Replace each edge in T with two oppositely directed arcs. Let Y be a
value chosen uniformly at random from (0, U]. Take an Euler tour of the vertices
in T, starting from r and visiting all the other vertices {ji1, j2,...,Jm} in T. Let a
counter @ be set to 0 initially. On visiting vertex ji, we update @ < @ + w(jx).
Also, let Qg and Qe be the value of v just before and after visiting jg,
respectively. On visiting jg, if 2U +Y € (Qotd, Qnew] for some integer z, then
“mark” ji and ask that it send Qnew — (¢U +Y) weight to the next marked
vertex lying clockwise on the tour. In the other case, we ask that ji send all its
weight to the next marked vertex lying clockwise on the tour. This construction
ensures that the maximum flow on an directed edge is at most U, and that
the probability that a vertex j gets marked is w(j)/U, which is exactly the
probability that j receives a weight of U.

Since we were working on a directed tour, the cost of this redistribution is at
most twice the cost of the tree T', as an edge in T was replaced by two oppositely
directed arcs. But, using simple flow canceling argument, one can show that one
copy of the edges in T is sufficient for such a redistribution.]

3 The Algorithms

We first show how to modify the algorithm of Gupta, Kumar and Roughgar-
den [5] to obtain an approximation ratio of ak, where ak is less than 65.49 for
all K. Recall that their algorithm solves the DSSBB problem, and not the SSBB
problem. We then present our main result, an approximation algorithm for the
SSBB problem that achieves an approximation ratio of 145.6 in Section 3.2.

3.1 The DSSBB Problem

The vertices of the graph G = (V, E) may have non-integer weights as demands,
because of the scaling done to make u; = o1 = 1. Since the flow is divisible, there
is no loss of generality in assuming that d; < 1, because a demand greater than
1 can be split into multiple demands by splitting a vertex into [d;] vertices. The
algorithm is simpler with this assumption, and easily adapts to higher demands
by adjusting the probabilities without actually splitting vertices.

Construct a p-approximate Steiner tree 7Tj, using cables with capacity u; = 1,
spanning all the demands in D. Redistribute the demands using the construction
in the proof of Lemma 1, with /' = 1, and collect integral demands at some subset
of vertices in D. The cost incurred to do this redistribution is just the cost of the
Steiner tree [5], and since the optimal solution contains a candidate Steiner tree,
we incur a cost of at most p x 37, C*(j)/o;. We can assume that the number
of demands |D| is a power of 1 + ¢, as this can be achieved by placing dummy
demands at the root vertex r.

The algorithm given below closely follows the incremental design of Gupta et
al.’s algorithm [5] to build the network. The algorithm proceeds in stages using
only cable types ¢ and ¢+ 1 in stage ¢, except for the last stage (¢ = K) in which
only cables of type K are used.

At the beginning of the first stage, D; = D with each demand j € D having
weight d; = 1 = uy. In general, at the beginning of stage ¢, D; is a set of |D|/u,
vertices, each with demand u;. During stage ¢, our algorithm (presented below)
uses ut41 as the “aggregation threshold” to combine several demands of weight
u into a single demand of weight ;1. Unlike [5], where capacities are powers of
2 which ensures that u;41 1s an integral multiple of of u:, in our algorithm w41
is not necessarily an integral multiple of u;. As a result, during the aggregation
process our algorithm may have to combine demands of weight u; from, say, 1.33
vertices to obtain a demand of weight u;41. The cables required to perform such
an aggregation are bought by the algorithm. The demand will reach the root at
the end of the algorithm. The final solution is then given by the union of all the
paths used in the aggregation stages.

Given below are the steps performed at stage ¢ of the algorithm. Its first
three steps are exactly the same as in [5]. Whenever we mention a fraction of a
vertex, we mean a fraction of the demand from that vertex.

D1. Mark each demand in D; with probability ps = u:/g:, and let D} be the
marked demands.

D2. Construct a p-approximate Steiner tree 73 on Fy = Df U{r}. Install a cable
of type ¢ + 1 on each edge of this tree.

D3. For each vertex j € Dy, send its weight u; to the nearest member of F
using cables of type t. Let w; (%) be the weight collected at i € F;. All vertices
that sent their demands to the same vertex ¢ are said to belong to #’s famuly,
which we call as G;.

D4. A vertex ¢ € F; collects the demands sent to it by all vertices in its family,
G, divides it into groups of size uyy1. Each member of G; may partition its
flow and contribute to at most two groups. Flow from a group g is sent back
to a random vertex of g by buying a new cable of type ¢ + 1. If the whole
vertex belongs to g, then the probability that that vertex receives back a
weight of ugyq is ur/usyq1. But if only a fractional part f of a vertex demand
belongs to g, then the probability that that vertex receives back a weight of
Ug41 18 fup/ugy1. Some residual demand may be left over at ¢ which will be
aggregated into demands of u:y; using redistribution in the next step. Let
the number of residual vertices at i be b;.

D5. After rerouting the collected weight back from 7 to vertices in D; in the
above step for all i € F;, we aggregate the weights from residual vertices
into groups of weight exactly u;y1 using Lemma 1 with T' = T}, w (i) = bjuy
and U = ug41. For every ¢ € F; that receives uyy; weight as a result of
this aggregation process, send the weight back from ¢ to one of ¢’s b; residual
vertices, chosen uniformly at random, using newly bought cable of type t+1.
If the whole vertex is a residual vertex, then the probability that that residual
vertex receives back the weight of w44 is 1/b;. But if only a fractional part f
of a vertex demand is residual, then the probability that that vertex receives
the weight of usyq is f/b;. In this scheme, a vertex j may receive back a
weight of 2u:41 in stage ¢ as a result of it being in two groups, which can be
viewed as duplicating the vertex.

At stage ¢, since the u;y1 demands from 7 € F; for all ¢ are returned back
to a subset of vertices in D;, Diy1 C D, for all t. When ¢ = K, we set pg = 0.
Hence, in the Kth stage of the algorithm none of the demands are marked, and
thus the weights of all vertices in Dk are sent directly to root r using cables of
type K. We use the following lemmas to analyze our algorithm.

The lemma below appears as Lemma 4.2 in [5]. But its proof in [5] is not
directly applicable to our algorithm, because the value of u;y1 in our algorithm
is not necessarily an integral multiple of the value of u;, for all ¢.

Lemma 2. For every non-root vertex j € D and stage t
Pl‘[j S Dt] = I/Ut

Proof. We prove the lemma by induction on ¢. The lemma is clearly true for the
base case, t = 1, since u; = 1. Suppose the lemma is true for stage t. We will
show that it is true for stage ¢+ 1. In stage ¢, let j € D, send its weight to i € F;.
Vertex j must satisfy one of the following conditions: (i) j belongs to just one
group, (ii) j belongs to two different groups, (iii) j is fully a residual vertex, and

(iv) part of j belongs to a group while the rest of j is residual. Recall that a
vertex can belong to at most 2 groups.

In case (i), the probability that j receives back the group weight of u;qq is
ut/urq1. In case (ii), let a fraction f of j belong to group g; and the rest of
J belong to group ga. The probability that j receives back g1’s weight of wutqq
is fu¢/utq1, while the probability that j receives back gs’s weight of wusyq is
(1 = f)ug/ust + 1. Overall, the probability that j receives back a weight of uzyq
is us/ugy1. In case (iii), the probability that i is assigned the weight of w44 is
bjus/usy1, and the probability that j receives this weight from i is 1/b;, thus
making the overall probability that j receives a weight of u;y1 to be uy/usy1.
By a similar argument, it is clear that the probability that j receives a weight
of ug41 in case (iv) is ug/uz41. Thus, we conclude that

Pr [j€Di1|=Pr[j€ D1 |jED] Pr[j€ D]
= (ue/urg1)(1/ur)
= 1/utq1.
|
The following lemma, proved by Gupta, Kumar and Roughgarden [5], applies
to our algorithm as well. The proof involves taking all cables of higher capacity

used by an optimal solution, and then extending it using randomization to span
Fi, and showing that this solution has low expected cost.

Lemma 3 ([5]). Let T} be the optimal Steiner tree on Fy, and ¢(Ty) = ZeET* Ce.
Then

* 1 * 1 * ¢
B[e(?)] <30+ Y = (s). 2
Ts s-gt
s>t s<t
Lemma 4. The expected cost incurred in stage t is at most (2+ p + %6) times

or+1E[c(T})], where T is the optimal Steiner tree on Fy.

The proof of the above lemma is given as Lemma 4.4 in [5] with ¢ = 1. Cost
incurred during stage ¢ is accounted for as follows: (i) the cost of the cables to
construct the Steiner tree in Step D2 is at most poyy1¢(T3), (ii) the cost of the
cables used in Step D3 is at most 204 41¢(77"), and (iii) the cost incurred in Steps
D4 and D5 to reroute the demands back to random vertices in D; is at most

((S}—tl) 2041¢(T7) < (%—}—e) 201410(T7).

Theorem 1. The approrimation ratio ag of our DSSBB algorithm is at most
65.49.

Proof. Recall that by rounding the costs and capacities of cables to powers of
(14 ¢), we lost a factor of (14 ¢)? in the approximation ratio. We incurred a

cost of
Cr, < p Y C*(§)/0;
J

for the construction of Steiner tree Ty to ensure integral demands at vertices. The
total cost Cs incurred during the K stages of the algorithm can be obtained by
substituting equation (2) in Lemma 4 and summing over all ¢, as shown below.

K s-1
Cs§<2+p—|——) Z +Z(Zot+1 E?)c*()
s=2 s t>s $
The cost of the final solution is given by
C = A(Cr, + Cs)
<A(2+p+ 2) (i+z) +§:(§0t+1+20t)0* (s)
1+4+e¢ o1 > o ico s ds ’

where A = (1 + €)%, Since o; and &; are powers of 1 + ¢, the summations are
upper bounded by 1+ 1/¢. This simplifies the above equation to

C<(1+e)2(2+p+1i+€)xz(1+)EC* (3)

which when optimized for € gives a ratio of 65.4899 for € &~ 0.585735. Here we
are using the current best approximation algorithm for finding a Steiner tree,
which guarantees an approximation ratio of p = 1 4 In(3)/2 [7]. i

Corollary 1. For a fired K, as < 12.7,a3 < 18.2, a4 < 23.8, a5 < 29.3, ag <
33.9 and so on.

Proof. The cost of the final solution C' = (1 + ¢)?(Cr, + Cs) can be rewritten as
pz ;0
K s— 10 P
—|—<2—|—p—|——) (Z +Z(Z ;+1+Zé—t)0*(s))].
k3 tZS El

t>1 s=2

C< 1—1—6

For a fixed K, there exists an € > 0 for which the corollary can be mathematically
verified. |

3.2 The SSBB Problem

During the preprocessing step, Gupta et al.’s algorithm [5] and our DSSBB algo-
rithm in Section 3.1 use redistribution on Ty to guarantee integral demands at
the vertices. Later, vertices of integral demands are duplicated so that the de-
mands at vertices are unit weight. Because of this redistribution and duplication,
there i1s no guarantee that the demand from a vertex in the input graph travels
along a single path to the sink, as the demand at a vertex may have been split

during the redistribution and/or duplication process. In our algorithm below, we
make sure that demand at a vertex follows a single path to the sink. Like [5], we
set € = 1, which makes u; and o; (and by definition ;) powers of 2. This gives
us the flexibility of generating u; 41 weighted nodes from integral number of u;
weighted nodes, thereby eliminating splitting of demands.

In what follows, we present a sequence of lemmas, which help in guarantee-
ing the indivisibility constraint. Recall that Lemma 1 redistributes the weights
uniformly at random and the probability that a vertex receives a weight of U is
proportional to its weight.

Lemma 5. FEither there exists at least one arc with zero flow in the directed tour
t constructed in procedure of of Lemma 1, or there exists a redistribution (using
Lemma 1), with zero flow on at least one arc of the directed tour, which produces
the exact same assignment of weights.

Proof. The proof is complete if the first part of the lemma were true. Suppose
it were not true. Let ¢ be the directed tour in the procedure of Lemma 1, which
was used to redistribute the weights. Let m > 0 be the smallest flow across a
directed edge in ¢t. Note that m < U. For each directed edge in ¢, subtract m
from the flow on that edge. After this, we are guaranteed that at least one edge
in ¢ has a zero flow. Since this post-processing does not alter the distribution of
weights, the proof is complete. |

Lemma 6. There exists a redistribution using the procedure of Lemma 1 with
Y = U, whach produces the exact same assignment of weights as that with'Y that
is chosen uniformly at random from (0,U].

Proof. Let t be the directed tour in the proof of Lemma 1. As per Lemma 5,
there exists at least one edge in ¢ with zero flow. Let e be an edge in ¢t from
vertex p to vertex ¢ with zero flow. Without loss of generality, we can assume
that p € D. As per the construction in the proof of Lemma 1, p must be one of
the vertices that must have been marked. Since the flow on e is zero, it must be
that Qnew at p is equal to zU 4+ Y for some integer z, which means that vertex
g marked just after p must either have (x + 1)U +Y € (Qoia at ¢, Qnew at g] or
Y € (Qoid at g, Qnew at g]. This means that Qneyw at g is at least U greater than
Qnew at P

Recall from the proof of Lemma 1 that the vertices in ¢ are visited starting
from r. We now show that a construction with Y = U on ¢, visiting vertices
starting from ¢ (instead of r) produces the exact same assignment of weights as
that with Y that is chosen uniformly at random from (0, U]. From the above
discussion, since @Qne at g is at least U greater than Qe at p, and the flow
on e is zero, it can be seen that the construction with Y = U on ¢ and visiting
vertices starting from ¢ produces the exact same outcome as what 1s desired,
i.e., the set of vertices that were assigned a weight of U will exactly be the same
as that marked in the proof of Lemma 1. |

The following lemma is easier than it appears, and differs from Lemma 1 in
the following two aspects: (i) weights of vertices in T' are powers of 2, and (ii)
demand from a vertex is not split.

vertex h vertex [

Fig. 1. [is a leaf node with h being its parent in 7.

Lemma 7. Let T be a tree with each edge having capacity U, a power of two.
For all v in tree T, let w(v) be a power of 2 with w(v) < U. Then there is
an efficiently computable flow on T that redistributes the weights, respecting the
cable capacity and without splitting a vertex weight, so that each vertexr receives
a new weight w'(j) that is either 0 or U. Moreover,

Proof. Using the argument in Lemma 6, we find a starting vertex from which we
start visiting the vertices in the directed tour (obtained by replacing each edge
in T with two oppositely directed arcs) in clockwise direction with Y = U. The
value of @ is set to 0 initially. Increment @ by w(j) on visiting vertex j. Let Qoq
and @Qpew be the value of @ just before and after visiting a vertex, respectively.
Also, maintain set Z which is initially empty. Add v; to Z on visiting vertex v;.
On visiting j, if for some integer z, 2U € (Qo1d, @Qnew], then we do the following:
(i) we find W C Z such that Qneyw — 2U = ZieW w(7), and (ii) ask the vertices
in Z\W to send their weights to j while removing them from Z.

We now show how to find W C 7. Let g be the first vertex at which Qnew >
U. The proof of Lemma 6 would have marked g and asked ¢ to send Q¢ — U to
the next marked vertex lying clockwise on the tour. We show that there exists a
W C Z whose removal from Z makes Qnew — ZieW w(t) = U. This is same as
showing that there exists a set M C Z such that)., w(i) = U. Recall that
no vertex in Z has a weight more than U. To show that there exists an M, all
we need to do is the following. Merge two vertices @ and b of same weight w in
Z into one vertex with weight 2w. Since w is a power of 2, the weight of the new
vertex remains a power of 2. Continue this merging process until (i) a vertex in
7 is of weight U or (ii) no more merging is possible. While the former proves
our claim, the latter is not possible as it is a contradiction to) ;. , w(i) > U,
because Y, _, 2% < 2/+1. Once M is found, W = Z\ M. The vertices in W will
be the sole contributors of the flow from g to the next vertex lying clockwise on
the tour. This argument holds true for every vertex j at which zU € (Qo1d, @new)
for some integer x. Notice that the probability that a vertex j € T receives (gets
assigned) a weight of U is w(j) /T, which is exactly what we needed, as per the
lemma statement.

The proof will be complete once we show that the redistribution can be done
on T rather than on the directed arcs of the Euler tour on 7. Consider a leaf
node [€ T that is in the Euler tour. Let A € T be the node that was visited
just before and after [(h is {’s parent in T, which is rooted at 7). We use 2’ and

z'" to represent vertex z € T in the directed Euler tour, with the tour entering
z’ and leaving z". Let fp;r and fip be the flows on arcs from A’ to I’ and "
to A", respectively (see Fig. 1). During the redistribution process, if [had sent
all its weight to some vertex— lying clockwise on the tour—that was assigned a
weight of U, then ask h’ to send the flow fj,/;: directly to A" instead of sending it
through [. If | was assigned a weight of U in our redistribution process, then ask
the vertices in W to reroute their flow bypassing [, i.e., make the flow coming
into A’ go directly to h” instead of routing it through . Remove [from T, and
repeat this process for all leaf nodes in T'. Note that whenever a leaf node is
removed from 7', the flow on the tree edge connecting that node to 7" is at most
U. This process stops when there is just one node left in 7'. This completes the
proof of Lemma 7. |

Let G = (V, E) be the input graph with root » € V, and let D C V be the set
of demands with d; denoting the weight at j. Recall that the vertices in D may
have non-integer weights because of the scaling we did to ensure u; = o1 = 1.
Construct Ty, a p-approximate Steiner tree spanning D, using cables of capacity
uy. Use the procedure in the proof of Lemma 1 on Ty with U = uy, with w(yj)
being the fractional part of d; € D, to collect demands at some subset of vertices
in D such that the new weight w'(j) of a vertex in D is either 0 or U. The cost of
the redistribution will just be the cost of Tj. Since an optimal solution contains
a candidate Steiner tree, the cost of Tp is at most p), C*(i)/0o;.

As per the redistribution procedure, notice that (i) weight w(j) of vertex
j € Ty may have been split and assigned to at most two different nodes in Tp,
and (ii) the weight of U is collected at a vertex j € D if and only if w(j) > 0,
as the probability of a vertex getting assigned a weight of U is w(j)/U (by
Lemma 1). The former point is not consistent with our objective of routing
the demands without having to split them across two nodes. To overcome the
splitting, we round the integral demands at D up to the nearest powers of 2,
and solve the problem for these new (rounded) weights. Even though, this means
that we might install at most twice the required cable capacities, thereby losing
a factor of 2 in the approximation ratio, we will have enough cable capacities
installed so as route the original demands without having to split them.

Now, replace vertex v € D of weight w(v) by w(v) unit weight vertices. Let
{v1,. .., Vw(v)} be the set of unit weight vertices that represent v. We call v to
be the origin of v;, i = 1 to w(v). Our algorithm will ensure that the unit weight
demands having a common origin travel together—along a single path—towards
the sink.

The algorithm given below proceeds in the same manner as that in [5]. At
the beginning of stage 1, Dy = D with each demand j € D having weight
d;i = 1 = uy. In general, at the beginning of stage ¢, D; is a set of |D|/u
vertices, each with demand u;. During stage ¢, our algorithm (presented below)
uses the value u;y1 as the “aggregation threshold” to combine several demands
of weight u; into a single demand of weight u;41. The cables required to perform
such an aggregation are bought by the algorithm. The demand will reach the
root at the end of the algorithm. The final solution is then given by the union of

all the paths used in the aggregation stages. Given below are the steps performed
at state ¢ of the algorithm.

S1. Mark each demand v in D; with probability p; = u:/g:, and let D} be the
marked demands.

S2. Construct a p-approximate Steiner tree T; on Fy = Df U{r}. Install a cable
of type ¢ + 1 on each edge of this tree.

S3. For each vertex j € Dy, send its weight w(j) to the nearest member of F;
using cables of type t. If two vertices have a common origin, ensure that both
vertices send their weight to the same ¢ € F}, as this guarantees that vertices
having a common origin travel together, thus satisfying the indivisibility
constraint. Let S, be the set of vertices, with common origin v, that sent
their weights to i € Fy. Let w;(Z) be the weight collected at i € F;.

S4. For each i € F}, order the vertices that sent their weight of u; to ¢ in
such a way that the vertices in S, are ordered before the vertices in S, if
EARIEN
Divide the vertices in the ordered set into groups of us41/u; vertices, starting
from the first vertex, leaving behind b; = (w;—(j) mod u;%) residual vertices
at the end. Send back the weight of u;41 emanating from each group of
ut41/ug vertices back from i to a random member of that group, buying
new cables of type ¢ + 1. Since uy, ur41 and |Sg|, for all k, are powers of 2
by definition, our construction ensures the following: (i) set Sk, with |Sg| >
uy1/us, is divided into p groups, where p > 1 is a power of 2, (ii) set Sk,
with [Sk| < u¢41/us belongs to exactly one group. This implies that vertices
with common origin travel together.

S5. For each i € Fy, divide the b; residual vertices into ¢; sets R}, ..., R¥*, with
each set containing vertices having common origin, and the weight w(Rg) of
a set Rg being the number of vertices it contains. Let F{ = ¢ initially. For
each i € Fy, if ¢; > 1, then add ¢; copies of i into F/, one for each set, with
each copy carrying a weight of the sum of the vertex weights in the set that
it represents. Observe that the weights of the vertices in F{ are powers of 2.
Also, note that T; spans all the vertices in F{, as the vertices in F] are mere
copies of the vertices in F;. Use the procedure of Lemma 7 on T; spanning FY
with U = wusy1 to aggregate residual weights into groups of weight exactly
ut4+1 in a subset of vertices in FY. During the redistribution procedure, for
every i € Fy, ensure that its copies in F/ are visited consecutively. This, along
with the fact that u; Z?’:l w(R!) < Upyq for every i € F; ensures that at
most one copy of ¢ in F/, representing ¢ € F;, gets assigned a weight of u;.
Transform the redistribution among the vertices in F} into a redistribution
among the vertices in F} by assigning a weight of u;41 to vertex 7 € Fy if
one of i’s copy was assigned a weight of u;1 in F}, and 0 otherwise. Notice
that the probability that a vertex ¢ € F; is assigned a weight of u;y; still
depends on i’s weight (residual weight, which is b;u;). For every i € Fy, that
receives a weight of usy1, choose a vertex v € b; uniformly at random, and
send the weight of u;41 from 7 to v using cables of type ¢t + 1.

When t = K, we set the probability for non-root vertices px = 0, which
implies that no vertex in stage ¢ = K is marked. The weights from all the vertices
in Dk are directly routed to r using cables of capacity K. The approximation
analysis for our SSBB algorithm is exactly the same as that for the Gupta et
al.’s DSSBB algorithm [5]. All the lemmas used to prove Theorem 1 hold for
our SSBB algorithm as well, but with ¢ = 1. Recall that after the preprocessing
step, we lose a factor of 2 from rounding up the weights of vertices to the nearest
powers of 2. This means that our algorithm for the SSBB problem guarantees a
ratio of twice that of Gupta et al.’s DSSBB algorithm. The cost C' of our final
solution is 2 times the cost in equation (3), and is given by

C<2x4x24p+1)x2(141)> C(s).

Using the current best approximation ratio of p = 1 4 In(3)/2 [7] for finding a
Steiner tree, we obtain a ratio of 145.6.

Theorem 2. Qur algorithm for the SSBB problem guarantees an approrimation

ratio of 145.6.

References

1. B. Awerbuch and Y. Azar, “Buy-at-bulk network design,” in Proc. 38th IEEE
Symp. on Foundations of Computer Science (FOCS), pp. 542-547, 1997.

2. Y. Bartal, “Competitive analysis of distributed on-line problems-distributed pag-
ing,” Ph.D. Dissertation, Tel-Aviv University, Israel, 1994.

3. N. Garg, R. Khandekar, G. Konjevod, R. Ravi, F.S. Salman and A. Sinha, “On the
integrality gap of a natural formulation of the single-sink buy-at-bulk network de-
sign problem,” in Proc. 8th Intl. Conf. on Integer Programming and Combinatorial
Optimization (IPCO), pp. 170-184, 2001.

4. S. Guha, A. Meyerson and K. Munagala, “A constant factor approximation for the
single sink edge installation problems,” in Proc. 33rd ACM Symp. on Theory of
Computing (STOC), pp. 383-399, 2001.

5. A. Gupta, A. Kumar and T. Roughgarden, “Simpler and better approximation
algorithms for network design,” in Proc. 35th ACM Symp. on Theory of Computing
(STOC), pp. 365-372, 2003.

6. R. Hassin, R. Ravi and F.S. Salman, “Approximation algorithms for capacitated
network design problems,” in Proc. 3rd Intl. Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX), pp. 167-176, 2000.

7. G. Robins and A. Zelikovsky, “Improved Steiner tree approximation in graphs,” in
Proc. 11th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 770-779, 2000.

8. F.S. Salman, J. Cheriyan, R. Ravi and S. Subramanian, “Approximating the single-
sink link-installation problem in network design,” SIAM J. on Optimization, 11(3),
pp. 595-610, 2000.

9. K. Talwar, “Single-sink buy-at-bulk LLP has constant integrality gap,” in Proc. 9th
Conf. on Integer Programming and Combinatorial Optimization (IPCO), pp. 475-
486, 2002.

»

