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Abstract— We consider the problem of placingk proxies on
a n node network to support server-based reliable multicast.
Typically, in a multicast connection, the sender transmits
information to all the receivers in the multicast group. Fail-
ures in transmission causes receivers to send retransmission
requests to the sender. Due to high retransmission requests,
the sender could become a potential hot-spot in the network.
Also, receivers far away from the sender could experience
high delays in receiving the retransmitted information. To
prevent these and other issues, the notion of placing proxy
(or repair) servers across the network was introduced, so
that receivers could send their retransmission requests to the
nearby proxy servers than to the source. In this context,
we consider static placement of proxies on a network in
which multicast requests (trees) are generated dynamically.
The placement of proxies should be such that the proxies
are utilized efficiently by the dynamically generated multicast
trees.

In this paper, we present three heuristics for efficient
placement of proxies on any given network. We compare
the performance of our heuristics with the best available
heuristic KMPC [18] as well as the random proxy placement
heuristic. Experiment results show that one of our heuristics,
the NASPC, outperforms all the other heuristics with respect
to all performance measures considered.

Keywords— Reliable Multicast, Proxy Servers, Proxy Place-
ment, Network Management.

I. I NTRODUCTION

Companies, Internet Service Providers and other large
campus and communications networks often need to mul-
ticast messages originating at a central location. Emerging
applications such as video conferencing, instant messaging,
pay-per-view special events make use of such services. The
nodes participating in a multicast are modeled as a tree.
Depending on the receiving nodes, the shape of the tree
and hence the participating nodes forming the tree also
change. The tree is thus a dynamic structure superimposed
on a static network comprised of nodes and links between
these nodes. At any point in time, multiple multicast trees
may be active.

While it is natural to have the message originating at
any one node, it is not efficient, in the case of requests
for retransmissions (due to errors in original transmissions
and or other failures), to involve the same original (source)
node, with all the attendant overheads of multiple link

negotiations, multiple levels of node traversals and the
added problem of overwhelming the source node with
too many simultaneous requests. It would be far more
efficient if caches of the message are stored in proxies
along the way. Intermediate and multiple nodes storing
and forwarding copies of messages, upon request, would
enable both the distribution and the balancing of the load
on the originating source node and speedier responses to
the nodes requesting retransmissions. Such nodes are called
“repair servers” or “proxy servers”. An added benefit is the
reduction in the traffic on the network, since the lengths that
both requests and retransmissions travel will be minimized
in such a scheme.

In this model, as the messages arrive from the source,
a proxy server sitting on that multicast tree starts storing
those messages. These messages are purged when either all
recipients in the subtree corresponding to the server have
acknowledged receiving them or when the buffer gets full
and a scheduling algorithm deletes an item to make way
for future packets. When nodes detect missing packets, they
send a retransmit request to the source, and this request is
intercepted by its nearest ancestor acting as a proxy server
which has a copy of those packets.

Proxy server placement is non-trivial. For, while the
trees are generated dynamically, the server placement is
made only statically. Proxy servers cannot be created dy-
namically, tailored to dynamic multicast trees on-demand,
because their specific hardware and software requirements
are not readily found on all network nodes. Nodes acting as
proxies require substantially more storage and processing
power, and therefore are substantially more expensive to
operate than normal routers. We are thus left with the
problem of selecting, a-priori, optimal number of nodes
and node sites to host the proxy servers on a network,
without prior knowledge of the multicast trees that will
arise. An allocation of nodes as proxies is evaluated on
a number of metrics, such as the average and worst-case
number of hops traversed by a retransmit request before it
finds a proxy server (latency), and the number of proxies
that are able to serve a given multicast tree (hit ratio).



A. Problem Formulation

Given a network, represented by a graphG = (V,E),
where V is the set of nodes (nodes can be thought of
as routers) andE is the link set. A proxy server can be
placed at any node, and once a proxy is placed at a node,
it cannot be relocated to another node. In simple terms,
a proxy server can be thought of as a specially designed
host co-located with a router, or as a router with proxy
server capabilities integrated into it. Multicast trees on this
network are established and released dynamically (online),
i.e., no prior information about the multicast trees (senders
and receivers) are known.

Under these circumstances, we are asked to placek

proxy servers atk node locations such that proxy servers
are utilized to their fullest extent. Utilization of a proxy
server can be interpreted as the efficient usage of the proxy
server by as many multicast trees as possible. Naturally, the
placement of proxies should be such that the latency (or
delay) experienced by a receiver is kept to a minimum. The
latency for a receiver to receive a packet after it has issued
a negative acknowledgment (request for retransmission), is
defined to be the distance (number of hops) between that
receiver and the closest proxy server along its path to the
sender (source). In this paper, the words source and sender
are used interchangeably.

B. Previous Works

Numerous schemes have been proposed in recent years
to handle proxy placements on the Internet satisfying
various requirements. The fundamental requirement is
fast local recovery (retransmissions) of lost packets. In
general, local recovery schemes are classified into two
types: (i) receiver-based recovery schemes and (ii) server-
based recovery schemes [12]. For details on local recovery
schemes, we refer the reader to [1], [3], [13], [14], [22] for
server-based recovery schemes and [4], [6], [7], [15], [19],
[20] for client-based recovery schemes.

Li et al. [16] considered the placement ofk proxies
on a n node tree network. They presented a dynamic
programming approach to find the optimal placement of
proxies that minimizes the sum of latencies of all the
nodes in the network. In [8], Jia et al. considered the
problem of placingk proxies on ann node tree network
with m proxies already placed on it. They use a dynamic
programming formulation to find an optimal solution that
minimizes the maximum latency among others. Kamath et
al. [11] considered the proxy placement on Internet logical
topology based on the network topology and routing poli-
cies. Qiu et al. [21] studied the online problem of placing
web server replicas in content distribution networks. They
use workload information to make informed placement
decisions. Lin and Yang [18] were the first ones to present
a set of heuristics for the problem discussed in this paper.
Among the 3 heuristics that they presented, thek-maximum
shortest path count(KMPC) heuristic obtains the best results.

KMPC places proxies on the nodes through which the most
number of shortest paths pass through.

II. H EURISTICSFOR PROXY PLACEMENT

For the problem defined in this paper, we propose the
following three heuristics for efficient placement of proxy
servers on any given network.

A. Thek-median heuristic (MEDIAN)

Initially a proxy is placed at a node such that the sum
of the distance (number of hops) from every node to this
proxy is minimum. The remainingk−1 proxies are placed
one at a time based on the policy that every time a new
proxy is placed on one of the nodes, it is made sure that the
sum of the distance from every node to its closest proxy
is minimum.

Thek-median heuristic above was designed based on the
k-median problem [17], which is NP-hard. In thek-median
problem, we are asked to findk nodes (medians) in ann-
node network, such that the sum of the distances from each
node to its nearest median node is minimum.

B. The non-adjacent maximum degree count heuristic
(NAMDC)

The nodes are sorted in non-increasing order based on
the number of links connected to them. Number of links
connected to a node is otherwise known as its degree. The
k proxies are placed at the firstk non-adjacent nodes of
the sorted list.

The intuition behind the NAMDC heuristic is that there
is a high probability that most of the paths in a network
passes through high degree nodes. The reason behind plac-
ing proxies on non-adjacent nodes is to prevent clustering
of proxies.

C. The non-adjacent shortest path count heuristic
(NASPC)

An all-pair shortest path algorithm is first used to find
the shortest paths between any two nodes. Then the number
of shortest paths passing through each node is counted.
The nodes are sorted in non-increasing order based on
the number of shortest paths passing through them. The
k proxies are placed at the firstk non-adjacent nodes of
the sorted list.

In the NASPC heuristic, proxies are placed such that no
two proxies are next to each other. The reason behind this
is that in a low-degree network, such as the Internet whose
average degree is in the range 3 to 4, it is important to
spread the proxies than to cluster them together. Clustering
the proxies serves no purpose as it will only increase the
average latency of the nodes.

To understand the importance of placing the proxies at
non-adjacent nodes, consider an instance in which most
of the shortest paths are passing through a low-degree



node, sayA. SinceA is a low-degree node, there is a
high probability that majority of the paths passing through
A would pass throughA’s neighboring nodes as well. In
which case, if we do not restrict the placement of proxies
at non-adjacent nodes, there is a high chance that the
algorithm will place proxies atA’s neighboring nodes as
well, which could useless and detrimental if the network
size is fairly large and the number of proxies that are to
be placed on the network is relatively very small. Hence,
it is very important that the proposed method prevents
clustering of proxies.

III. S IMULATION AND PERFORMANCEEVALUATION

We performed simulations to study the performance of
our heuristics against the current best heuristic KMPC [18],
and the random proxy placement heuristic (in which thek

proxies are placed atk random nodes).

A. Network Model

The network model used in this paper is similar to
the ones used in [5], [9], [10], [21], [23], and possess
some of the characteristics of a real network. We generated
random graphs to represent the network model. The non-
deterministic nature of random graphs is critical as it en-
sures that the quality of the network design algorithms are
independent of the network configuration. In our network
model, the nodes are randomly distributed on a rectangular
unit grid. Existence of a link between any two pair of
nodes, u and v, is decided based on a link existence
probability functionPe(u, v). One of the most popular link
probability function, known as the the Waxman model [23],
is given by

Pe(u, v) = β exp
(−dist(u, v)

Lα

)
where dist(u, v) is the distance between nodesu and v
and L is the maximum distance between any two nodes
in the graph. Parameter0 < β ≤ 1 controls the density
of links in the graph. Increase in theβ value increases
the number of links in the network. Parameter0 < α ≤ 1

controls the density of relatively short links in the graph.
Increase in the value ofα will increase the density of
short links in relation to the longer links. One major
problem with the Waxman model is that as the number
of nodes in the network increases, the number of links
from each node (degree of the node) also increases. To
maintain the characteristics of the graph under scaling, a
modification has to be introduced [5], which scales the
value of Pe(u, v) by a factor related to the number of
nodes,n, in the graph. And to ensure that the mean degree
remains relatively constant, another scale factor between
two random points must be introduced [9]. The modified
link probability function now looks as follows:

Pe(u, v) =
ψδ

n
β exp

(−dist(u, v)

Lα

)

whereδ is the mean degree of a node andn is the number
of nodes in the graph. Graphs generated with values ofα =

0.25 andβ = 0.2 roughly resembles the geographical maps
of major nodes in the Internet [5]. To generate graphs with
degreeδ = 3, α = 0.25 andβ = 0.2, the value forψ has to
be set to approximately 25 [5]. After generating links using
the above link probability function, there is a possibility
that the resultant graph might not be connected, i.e. there
may be more than one connected component. This can be
easily detected using a minimum spanning tree algorithm.
If there is more than one component, then necessary links
are added to combine individual components into one
component, which will be the final graph.

B. Multicast Tree Construction Algorithms

Constructing a multicast tree spanningm nodes of an
node network is often modeled as the Steiner tree problem,
which is NP-Complete. Since the computation of Steiner
trees is intractable, several Steiner tree heuristics have been
proposed. For a detailed list of such heuristics and their
performance, we refer the reader to [2]. We considered the
following two well-known heuristics for the construction
of multicast trees.

• Point-to-Point Shortest Path Heuristic (PPSPH):Every
receiver node in the multicast tree is connected to the
source node along the shortest path to the source node.

• Shortest Path Heuristic (SPH): SPH starts with an
initial multicast tree containing just the source node.
It then repeatedly adds the next closest receiver node
to the multicast tree by the shortest path between the
receiver node and the tree. SPH terminates when all
receivers are added to the tree.

Experimental results [2] show that SPH outperforms
PPSPH heuristic by 5% on average.

C. Performance Measures

As in [18], for each data point in our simulation chart,
we generated 100 graphs. The proxy placement for each
graph was evaluated by establishing 50 multicast trees. For
each multicast tree, the sender and the receiver nodes were
randomly chosen from the nodes in the graph. Since SPH
is efficient than the PPSPH heuristic [2], we used SPH to
construct source-rooted multicast trees.

We definelatency of a receiver node to be its distance
(number of hops) to the closest proxy server along its
path to the source node (sender). In other words, latency
is the number of hops for a receiver node to receive a
retransmitted packet after it issues a negative acknowledg-
ment (request for retransmission). Since the major reason
for deploying proxies is to reduce the latency experienced
by a multicasting member (receiver node), we consider
latency to be the major performance measure among others.
We consider the following three performance measures to
evaluate the performance of our heuristics:



• Average latency: The average of the latencies of the
receiver nodes.

• Average worst-case latency:The average of the laten-
cies of the high-latency nodes (a receiver in a multicast
tree that experiences high latency is called the high-
latency node).

• Average hit ratio: The average of the hit ratios of the
proxy servers. For a given graphG and a number
of multicast trees defined onG, the hit ratio of a
proxy server is the percentage of the total number of
mulitcast trees that use the proxy server as one of its
proxies.

D. Simulation Results

We compare the performance of our heuristics with the
current best heuristic KMPC [18] and the random place-
ment of proxies (RANDOM). Unless otherwise mentioned,
the number of nodes in each graph is 1000. For comparison
purposes, as in [18], we kept the size of the multicast trees
to be 50% of the number of nodes in the graph, and number
of proxy servers to be 4% of the number of nodes in the
graph.

We tested the heuristics under various scenarios: (i)
different number of nodes in the graph (ii) different sizes
of the multicast tree (iii) different number of proxy servers.
Our experimental results show that NASPC performs the
best among all the heuristics tested, including the current
best KMPC [18]. In what follows, we describe in detail,
the results obtained from our simulations.

1) Average latency:Figs. 1, 2 and 3 depict the results
for the average latency experienced by a receiver for
different number of nodes in the network, different sizes
of multicast group and different number of proxies, re-
spectively. All our heuristics perform much better than the
random placement heuristic (RANDOM). When compared
to the current best heuristic KMPC, NASPC and NAMDC
produce smaller latencies. Interestingly, contrary to expec-
tations, MEDIAN obtained relatively higher latencies when
compared to KMPC. Results were consistent, regardless
of the number of nodes in the network, multicast group
size or the number of proxies. NASPC performs the best
with an improvement ranging from 2-3% over the current
best KMPC. The average latency increases as the network
size increase while it decreases as the number of proxies
increase. Increase in the multicast group size does not have
an effect on the average latency, which is ideally what is
needed.

2) Average worst-case latency:Simulation results for
average worst-case latency is shown in Figs. 4, 5 and 6.
Simulations were performed for varying number of nodes.
The effects of change in multicast group size and number
of proxies were also examined. All heuristics obtained sig-
nificantly better results when compared to RANDOM. All
the heuristics (MEDIAN, NASPC and NAMDC) proposed
in this paper outperformed the current best heuristic, the

KMPC, with NASPC obtaining the best results. NASPC
obtained improvements ranging from 2-3% over the current
best KMPC. Increases in the multicast group size and the
network size results in an increase in the average worst-
case latency. As expected, the average worst-case latency
decreased as the number of proxies was increased.

3) Average hit ratio: The average hit ratio was com-
puted under varying circumstances: different number of
nodes in the network, different sizes of multicast group
and different number of proxies. RANDOM performs much
worse than the other heuristics. Surprisingly, MEDIAN did
not perform as well as expected. There was not much
difference in the performance of KMPC and NASPC. Both
were equally good and outperformed all other heuristics.
Increase in the number of proxies results in a slight
decrease in the hit ratio as not all multicast trees can cover
all the proxies. Increase in the size of the multicast tree
results in an increase in the hit ratio, as larger mutlicast
trees spans more proxy nodes. Slight decrease in the hit
ratio was noticed when the network size was increased.
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Fig. 1. Average latency for networks of varying sizes.

IV. CONCLUSION

We proposed three heuristics (MEDIAN, NASPC,
NAMDC) for the placement of proxy servers to support
server-based reliable multicast. Simulations results show
that NASPC performs the best among the three heuristics.
We considered the average latency, average worst-case
latency and hit ratio as the performance measures to test
the quality of the proposed heuristics. Experimental results
show that NASPC outperforms KMPC (the current best
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Fig. 3. Average latency for varying number of proxies.

heuristic available for the problem considered in this paper)
with respect to all the performance measures considered.
To ensure that the heuristics are not input dependent, they
were put to test under varying input configurations such as:
networks of different sizes, mutlicast groups of different
sizes, and different number of proxies. The performance
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Fig. 4. Average worst-case latencies for networks of varying sizes.
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of the heuristics was consistent regardless of the input
configurations.
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