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Abstract

We present a simple 4-approximation algorithm for the extensively-studied Capacitated Min-

imum Spanning Tree problem. The approximation ratio of our algorithm matches the current

best ratio of 4, due to Altinkemer and Gavish. Our algorithm is simpler, and easier to analyze

when compared to the current best approximation algorithm.
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1 Introduction

A well-studied problem in network design is the Capacitated Minimum Spanning Tree (CMST)

problem. Consider a given undirected vertex-weighted graph G = (V,E) with non-negative costs

on its edges, root node r ∈ V , and capacity constraint k. The cost matrix on the edges is symmetric

and satisfies the triangle inequality. The CMST problem asks for a minimum cost spanning tree

rooted at r, in which the sum of the vertex weights in every subtree connected to r is at most k.

The CMST problem is NP-hard [5].

The CMST problem is one of the extensively studied network design problem in Computer

Science and Operations Research. Numerous heuristics and exact algorithms have been proposed

over the past 40 years. For a detailed survey on the literature, we refer the reader to [1, 4, 6]. In

this paper, we restrict ourselves to approximation algorithms for the CMST problem.

An α-approximation algorithm for a combinatorial optimization problem is a polynomial time

algorithm, which finds a feasible solution of cost at most α times the cost of an optimal solution.

We call α to be the approximation ratio of the algorithm. The value of α is greater than or equal

to 1 for minimization problems, and less than or equal to 1 for maximization problems. The closer

the value of α to 1, the better the approximation ratio.

For the CMST problem, Gavish and Altinkemer [3] were the first ones to present an algorithm

with any constant approximation ratio. In [2], they presented a (3 − 2
k
)-approximation algorithm

for the special case of the CMST problem, in which the vertex weights are all the same. They
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used this algorithm as a black-box to present a 4-approximation algorithm for the original CMST

problem with arbitrary weights. Henceforth, we will be referring Altinkemer and Gavish by their

initials AG.

In this paper, we present a new 4-approximation algorithm for the CMST problem. Our algo-

rithm is simpler and easier to analyze when compared to current best approximation algorithm [2]

available for the problem. The approximation ratio guaranteed by our algorithm matches the cur-

rent best ratio of 4 [2]. We show that there are instances for which the cost of the solution produced

by our algorithm is about one third of that produced by AG’s algorithm.

2 Preliminaries

We use the terms nodes and vertices interchangeably. Let |uv| denote the cost of an edge connecting

vertices u and v. We use r to denote the root vertex. For a given CMST instance, let OPT denote

an optimal solution with C∗ being its cost, and let Cmst denote the cost of a minimum spanning

tree (MST).

Lemma 2.1 ([2]) C∗ ≥ max{Cmst,
∑

v∈V
w(v)|rv|

k
}.

3 Overview of AG’s algorithm

AG’s algorithm [2] converts a given CMST instance with arbitrary vertex weights and capacity k

into a new instance with unit vertex weights and capacity k/2, by replacing each vertex v ∈ V of

weight wv with wv unit weight vertices. They construct a traveling salesman tour (TSP) visiting all

the vertices in the new instance, and partition the tour into segments (subtrees) of weight k/2. One

can perform an optimal partitioning of the tour, instead of settling for an arbitrary partitioning,

by choosing the best partitioning among all possible partitionings. If one chooses to do an optimal

partitioning, there may be up to 2 segments that are of weight less than k/2.

After partitioning the tour into segments, they connect r to the closest node in each segment.

They then show how to convert the solution for the unit weight instance with capacity k/2 into

a feasible solution for the given instance with capacity k. While their algorithm for the CMST

problem with unit vertex weights is straightforward, converting the solution for the unit vertex-

weighted CMST instance with capacity k/2 into a feasible solution for the arbitrary vertex-weighted

CMST instance with capacity k is quite involved. We refer the reader to [2] for more details.

As per their algorithm, the final cost of the solution comprises two components: (i) the cost of

the edges in the TSP, and (ii) the cost of the other edges (edges that connect the segments to r).

Since a TSP can be constructed by doubling the edges of an MST, for any given instance, the cost

of the TSP is at most 2C∗ (by Lemma 2.1). They show that the cost of connecting each segment

to r is at most 2C∗. This translates into an overall cost of at most 4C ∗.
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4 Our Algorithm

Our algorithms improve on the ideas of AG’s algorithm. Unlike AG’s algorithm, our algorithms

can directly be applied to a given instance without having to do any conversions as in [2], thereby

reducing the running time. Our algorithm for the CMST problem is given below.

Algorithm Partition-Tour (V ∗, r, k)

1. Construct a TSP tour t on V ∗ ∪ {r}.

2. set segmentWeight = 0.

3. Starting from r, traverse the tour in clockwise direction.

4. Let p and s be the vertices that are lying just before and after v on the tour.

5. While not all vertices in t are traversed and segmentWeight < k, visit the next vertex v.

(a) If segmentWeight +w(v) < k, set segmentWeight + = w(v).

(b) Else if w(v) ≥ k/2, remove v from t, and use shortcutting to connect p to s. (comment:

v is a segment by itself)

(c) Else remove the edge connecting v to p from t, and set segmentWeight = w(v).

6. Return the segments.

Algorithm CMST-Main (V, r, k)

1. Construct an MST T spanning V .

2. Root T at the root vertex r.

3. Let t1, t2, . . . , tm be the subtrees rooted at the children of r.

4. For every subtree ti connected to r in T ,

(a) S ← Partition-Tour ({v|v ∈ ti}, r, k).

(b) For every segment in S, if it is not already connected to r, connect r to the closest vertex

in the segment.

It can be verified that the above algorithm outputs a feasible solution for a given CMST instance.

In what follows, we show that the cost of the solution output by the above algorithm is at most 4

times the cost of an optimal solution.

Theorem 4.1 Our CMST algorithm guarantees an approximation ratio of 4.
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Proof. The cost of the final solution comprises of two components: (i) the cost of the TSP tours

for each subtree hanging off r, and (ii) the cost of connecting the individual segments, of weight at

most k, to r. It can be easily seen that the cost of the TSP tours is at most twice the cost of the

MST we started with. This is due to the reason that one can easily construct a tour spanning r and

the vertices in a subtree rooted at r by just doubling the necessary MST edges and shortcutting

the resulting Euler tour.

We now show that the cost of connecting the individual segments to r is at most twice the cost

of OPT. As per the partitioning procedure, observe that all, but the last, segments in a tour are

guaranteed to be of weight at least k/2. Moreover, notice that there is no need to connect the first

and the last segment of a tour to r as they are already connected to r by the tour edges, whose

cost has already been accounted. Let s1, s2, . . . , sm be the segments for which the algorithm added

edges to connect them to r. Recall that each of these edges connects r to the closest vertex in a

segment. Let V ′ represents the set of all vertices in segments s1, s2, . . . , sm, and let vi be the vertex

in si that is connected to r. Let W (si) =
∑

j∈si
w(j). Then,

|rvi| ≤
∑

j∈si

w(j)|rj|

W (si)

≤
∑

j∈si

w(j)|rj|

k/2

m∑

i=1

|rvi| ≤
m∑

i=1

∑

j∈si

w(j)|rj|

k/2

≤
∑

j∈V

w(j)|rj|

k/2

≤ 2× C∗ (by Lemma 2.1)

Thus, we can conclude that the overall cost of the tree output by the algorithm is at most 4 times

than that of an optimal solution.

In practice, our algorithm may actually perform better than AG’s algorithm. Let us consider

an instance with unit weight vertices, with r placed at distance M from all the other vertices. Let

the non-root vertices be clustered into k + 1 groups of k − 1 vertices, with inter-distance between

vertices in the same group being ε, and inter-distance between vertices in different groups being

2M . Observe that the edges of the instance under consideration obeys triangle inequality. Figures 1

and 2 illustrate the execution of AG’s algorithm and our algorithm, respectively, for the instance

with k = 8. While the cost of the solution obtained by AG’s algorithm is 3(k−1)M +(k−1)(k−2)ε,

the cost of the solution obtained by our algorithm would only be kM + (k− 1)ε. For a large k and

a small ε, our algorithm would return a solution of cost about one third of that returned by AG’s

algorithm. Note that the solution obtained by our algorithm is in fact optimal.
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Figure 1: AG’s algorithm on the sample instance with k = 8. (a) TSP tour spanning all the vertices.
(b) Partitioning of the TSP tour. (c) Partitioned subtrees are connected to root r, with the cost of
the final tree being 3(k − 1)M + (k − 1)(k − 2)ε.
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Figure 2: Our algorithm on the sample instance with k = 8. (a) MST spanning all the vertices.
(b) TSP tours, each spanning r and the vertices in a subtree rooted hanging off r. (c) Partitioning
of the TSP tours into segments. (d) Partitioned subtrees are connected to root r, with the cost of
the final tree being kM + (k − 1)ε.
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