
Dynamic Capacitated Minimum Spanning Trees
Raja Jothi and Balaji Raghavachari

Department of Computer Science, University of Texas at Dallas
Richardson, TX 75083, USA�

raja, rbk � @utdallas.edu

Abstract— Given a set of terminals, each associated with
a positive number denoting the traffic to be routed to a
central terminal (root), the Capacitated Minimum Spanning
Tree (CMST) problem asks for a minimum spanning tree,
spanning all terminals, such that the amount of traffic routed
from a subtree, linked to the root by an edge, does not
exceed the given capacity constraint � . The CMST problem
is NP-complete and has been extensively studied for the
past 40 years. Current best heuristics, in terms of cost
and computation time (�����	��

�������), are due to Esau and
Williams [1], and Jothi and Raghavachari [2].

In this paper, we consider the Dynamic Capacitated Min-
imum Spanning Tree (DCMST) problem in which a CMST�

, spanning � nodes and rooted at a central node � , with
capacity constraint � is given as part of the input. Requests,
from new nodes, for joining

�
arrive dynamically (online),

one at a time. Under this setting, we want to add the new node
to the existing CMST without having to recompute the entire
CMST, which would take ����� �

������� time. To our knowledge,
the DCMST problem has not been studied before. For the
DCMST problem, we propose three methods (COD, CFOD
and BSA) to add the new nodes to the existing CMST. All our
heuristics run in linear time. We compare the performance of
our heuristics with a CMST algorithm that recomputes the
solution every time a new node arrives.

Keywords—Capacitated Minimum Spanning Trees, Net-
work Design, Dynamic Graph Algorithms.

I. INTRODUCTION

Many network design problems involve finding min-
imum cost spanning trees satisfying certain connectiv-
ity constraints. Unfortunately, many such problems are
intractable (NP-hard). Due to this reason, the research
community has turned its attention on finding fast and
efficient heuristics to solve these computationally “hard”
problems.

One of the well-studied problems in the field of telecom-
munications is the Capacitated Minimum Spanning Tree
(CMST) problem. Given a set of terminals, each associated
with a positive number denoting the traffic to be routed to
the central terminal (root), the CMST problem asks for
a minimum spanning tree, spanning all terminals, such
that the amount of traffic routed from a subtree, linked to
the root by an edge, does not exceed the given capacity
constraint � . Each edge connecting two nodes have a
cost associated with it. Usually, the cost of a edge is
proportional to its length. The CMST problem is NP-
hard [3], [4]. In the design of telecommunication networks,

the CMST problem corresponds to the designing of a
minimum cost tree network by installing expensive (fiber-
optic) cables along its edges, with a capacity constraint� on the cable being used. The cables are assumed to be
bought at unit cost per unit length. Since the cable capacity
is � , every subtree, connected to the root using an edge,
can route a traffic of at most � to the root. Throughout
this paper, the terms terminals, nodes and vertices are
used interchangeably. The CMST problem can formally be
defined as follows:

CMST: Given an undirected vertex-weighted graph �������� �"!
, where

�
is the set of # nodes and

�
is the set

of edges connecting the nodes, root node $&% �
, and an

integer �('*) . The CMST problem asks for a minimum
spanning tree with the sum of the vertex weights of every
subtree, connected to $ by an edge, at most � .

The CMST problem has been extensively studied in
Computer Science and Operations Research for the past 40
years. Several heuristics and exact algorithms have been
proposed (see Section I-B for more details). The most
popular and efficient heuristic for the CMST problem is
due to Esau and Williams [1]. In recent work, Jothi and
Raghavachari [2] proposed a new heuristic that performs
better than that of Esau and Williams. Both heuristics run
in + � #-,�.0/213# !

time. There are other heuristics [5], [6],
[7] based on Tabu Search and Simulated Annealing, which
perform better in terms of the quality of the solution, but
their running times are much higher. For other heuristics
and exact algorithms on the CMST problem, we refer
the reader to [5]. For worst-case performance ratios and
approximation algorithms on the CMST problem, we refer
the reader to [8], [9], [10].

A. The DCMST Problem

Many problems in the field of communication networks
are designed as graph problems. Even though, in most
cases, the input graphs are static (remain unchanged),
there are situations in which graphs are subject to discrete
changes, such as addition and deletion of nodes or edges.
Networks, represented as graphs, that experience changes
in the topology are called dynamic networks. An interesting
problem in dealing with dynamically changing networks
is to perform the updates swiftly and efficiently without
having to shutdown the entire system.

In real life situations, it is quite normal for new nodes to
join the already available (or functioning) network. While
it could be cost efficient to recompute the overall network
topology due to the addition of the new node, it is more
time consuming to do so. Also, it is desirable that joining
of the new nodes causes less inconvenience to the already
functioning connected nodes.

In this context, we consider the Dynamic Capaci-
tated Minimum Spanning Tree (DCMST) problem. In the
DCMST problem, a CMST � , spanning # nodes and rooted
at a central node $, with capacity constraint � is given as
part of the input. Requests, from new nodes which are not
in � , wishing to join the existing CMST arrive dynamically
(online), one at a time. Under this setting, we want to
add the new nodes, one at a time as they arrive, to the
existing CMST without having to recompute the entire
CMST, which would take + � # , .0/21�# !

time. Since every
node in the CMST problem is associated a weight, which
denotes the amount of traffic that is to be routed to the
central node $, every new request comes with a weight
value associated the node that is to be connected to � . To
our knowledge, the DCMST problem has not been studied
before. In this paper, we propose three methods to add the
new node to the existing CMST. All our heuristics run in+ � # ! time. We compare the results of our heuristics with
the results obtained from recomputing the solution every
time a new node expresses its interest to join the existing
CMST.

B. Related Work

Algorithms for finding a minimum spanning tree (MST)
are well known. Amato et al. [11] and Cattaneo et al. [12]
studied dynamic minimum spanning tree algorithms for
maintaining minimum spanning trees in dynamic graphs.
Demetrescu and Italiano [13] presented a fully dynamic
algorithm for maintaining all pair shortest paths in dynamic
directed graphs with real-valued edge weights. Galil and
Italiano [14], [15] presented fully dynamic algorithms for
edge connectivity problems. For more details on dynamic
graph algorithms, we refer the reader to [11], [16].

The remainder of this paper is organized as follows.
In Section II, we present our heuristics for the DCMST
problem. Section III contains the experimental results of
the heuristics. Finally, Section IV contains our concluding
remarks and directions for future research.

II. HEURISTICS FOR THE DCMST PROBLEM

In this section, we present three heuristics for the
DCMST problem. Any heuristic for the DCMST problem
will have a worst-case running time of at least � � # ! . This
is due to the reason that for every new node that wishes
to join the existing CMST, it takes � � # ! time to compute
the distances between that node and the rest of the nodes
in the existing CMST. If the distance vector is given as a
part of the input along with the new node, then one can

choose to connect the new node to an arbitrary node in
the tree (provided the capacity constraint is not violated)
or to the central node. This naive approach will make the
running time constant, but the cost of the tree will increase
uncontrollably. We consider the case when the distance
vectors are not given as part of the input. All our heuristics
run in linear time.

Before we proceed to the heuristics, we define a few
terms. Let � be the CMST to which a new node is to be
connected. Let $ be the root node of � . Let � denote the
capacity constraint on � . Let � ��� ��� ! denote the distance
between nodes

�
and

�
. We use the term cluster to refer to

the subtrees rooted at the children of $.

A. The closest-or-direct (COD) heuristic

The new node � is connected to the closest node � in
the CMST � , provided that the sum of the vertex weights
in the cluster containing � plus the vertex weight of � is at
most � , and � � � � � !
	 � � � � $! . Otherwise, � is directly
connected to $. The time to compute the distances between
� and the nodes in � is linear. During the computation of
distances between � and the nodes in � , � ’s closest node
can be found. Once � ’s closest node is known, it takes
constant time to connect � to � . Thus the overall time
complexity of the COD heuristic is linear.

B. The closest feasible or direct (CFOD) heuristic

The new node � is connected to the closest node � in
the CMST � , provided that the following two conditions
are satisfied:

1) � � � � � !�	 � � � � $! .
2) the sum of the vertex weights in the cluster contain-

ing � plus the vertex weight of � is at most � .

If the first condition is not satisfied, � is directly connected
to $. If the second condition is not satisfied, we repeat the
above with � ’s second closest node and so on, until � is
included in the tree.

The CFOD heuristic can be implemented in linear time.
The time to compute the distances between � and the
nodes in � is linear. During the computation of dis-
tances between � and the nodes in � , compute the value��
�� ����������� � � � $!�� � � � � � !�� ��� �"!$# . If

��
%� ') ,
then � is connected to node � %&� that contributed to��
��

, otherwise � is directly connected to $.

C. The best savings (BSA) heuristic

The new node � is connected to node � in the CMST � ,
which provides the greatest savings. This heuristic is in line
with Esau and Williams algorithm [1]. Let '�(be the cluster
containing) and � � '�(� $! be the distance between $ and its
closest node in ' (. Let * ($+ �,� � ' (� $!-� � �) �/. ! . During
the computation of distances between � and the nodes
in � , compute the savings *10 � and * � 0 for every node
� %2� . Keep track of the node

� %2� for which the savings

produced (either *�� 0 or *10��) is positive and maximum
under the condition that the sum of vertex weights in '��
plus the vertex weight of � is at most � . Connect

�
and

� if the savings are positive, else connect � to $ directly.
The time to compute the distances between � and the

nodes in � is linear. Since the node in � to which �
is connected is found during the computation of distances
between � and the nodes in � , the running time of BSA
heuristic is linear.

III. EXPERIMENTAL RESULTS

We conducted simulations to study the performance of
our heuristics against a CMST heuristic (Esau and Williams
algorithm [1]) which recomputes the solution every time
a new node has to be connected to the already existing
CMST. Obviously recomputing the CMST will produce
better solutions when compared to our heuristics. But since
the goal behind dynamic graph algorithms is to perform
updates without having to recompute the entire solution,
running time is very crucial, apart from not disturbing the
operation of the existing nodes considerably. Since there
is no proper lower bound with which one can compare
dynamic online algorithms, it is of normal practice to
compare dynamic online algorithms with offline algorithms
which recompute the entire solution.

Each input instance contains a CMST of 100 nodes
with capacity constraint � , which was computed using the
Esau and Williams algorithm [1]. The nodes in the CMST
were generated using a random distribution of points in a�))�� �)) grid. The cost of an edge that connects points�

and
�

is the Euclidean distance between
�

and
�
. For

each instance, 50 new nodes were generated uniformly at
random. Every time a new node is generated, it has to
be connected to the CMST. We test our heuristics for both
weighted and unweighted versions of the DCMST problem.
In the unweighted DCMST version, the weights of all the
node is set to 1. That is, each node has a traffic of 1 unit
that has to be routed to the root node. In the weighted
DCMST version, each node is associated with an arbitrary
weight less than or equal to the capacity constraint � .

For each � value, we generated 100 instances, with each
instance starting with a 100 node CMST and performing
addition of 50 new nodes. For each � value, we computed
the average cost of the tree after the addition of

���
	
new

node, where
� � � ������� ��
) . Table I shows the average time

to perform the addition of new node to the existing tree.
Figures 1 to 8 compare the changes in the cost of the tree
for all the three heuristics proposed in this paper and the
Esau and Williams (EW) algorithm [1]. Our experimental
results show that CFOD and BSA produce the best results
among the three proposed heuristics. In terms of time,
CFOD is little faster than BSA. The fastest in terms of
time is the COD heuristic, but it does not produce good
results. While the worst-case running times of the three
proposed heuristics are linear, the worst-case running time
of EW algorithm is

� # ,-.0/21 # ! .

IV. CONCLUSION

In this paper, we considered the dynamic capacitated
minimum spanning tree problem. We presented three
heuristics for the DCMST problem and compared their per-
formance with the CMST algorithm (Esau and Williams)
that recomputes the solution every time a new node arrives.
Our experiments show that two of our heuristics (CFOD
and BSA) produce the best results.The CFOD heurstic is
slightly faster than the BSA heuristic. Our other heuristic
(COD) is the fastest among the three heuristics, but the
quality of the solutions were not as good as that of CFOD
and BSA. The worst-case running times of all our heuristics
are linear. We are currently investigating several other
heuristics for the DCMST problem.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation under grant CCR-9820902.

REFERENCES

[1] L.R. Esau and K.C. Williams, “On teleprocessing system design,”
IBM Sys. Journal, Vol. 5, pp. 142-147, 1966.

[2] R. Jothi and B. Raghavachari, “Design of local access networks,”
to appear in Proc. of the 15th IASTED Intl. Conf. on Parallel and
Distributed Comput. and Systems (PDCS), 2003.

[3] M.R. Garey and D.S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W.H. Freeman, San Fran-
cisco, 1979.

[4] C.H. Papadimitriou, “The complexity of the capacitated tree prob-
lem,” Networks, 8, pp. 217-230, 1978.

[5] A. Amberg, W. Domschke and S. Vo � , “Capacitated minimum
spanning trees: Algorithms using intelligent search,” Comb. Opt.:
Theory and Practice, 1, pp. 9-39, 1996.

[6] R.K. Ahuja, J.B. Orlin and D. Sharma, “A composite neighborhood
search algorithm for the capacitated minimum spanning tree prob-
lem,” Manuscript, 2001.

[7] Y.M. Sharaiha, M. Gendreau, G. Laporte and I.H. Osman, “A tabu
search algorithm for the capacitated shortest spanning tree problem,”
Networks, 29, pp. 161-171, 1997.

[8] K. Altinkemer and B. Gavish, “Heuristics with constant error
guarantees for the design of tree networks,” Management Science,
Vol. 34, pp. 331-341, 1988.

[9] R. Jothi and B. Raghavachari, “Topological design of centralized
communication networks,” Manuscript, 2003.

[10] R. Jothi and B. Raghavachari, “Approximation algorithms for the
capacitated minimum spanning tree problem and its variants in
network design,” Manuscript, 2003.

[11] G. Amato, G. Cattaneo and G.F. Italiano, “Experimental analysis of
dynamic minimum spanning tree algorithms,” Proc. 8th ACM-SIAM
Annual Symp. on Disc. Algorithms (SODA), pp. 314–323, 1997.

[12] G. Cattaneo, P. Faruolo, U. Ferraro Petrillo and G.F. Italiano,
“Maintaining dynamic minimum spanning trees: An experimental
study,” Proc. 4th Workshop on Alg. Engg. and Experiments, 2002.

[13] C. Demetrescu and G.F. Italiano, “Fully dynamic all pairs shortest
paths with real edge weights,” Proc. 42nd IEEE Annual Symp. on
Foundations of Computer Science (FOCS), pp. 260-267, 2001.

[14] Z. Galil and G.F. Italiano, “Fully dynamic algorithms for edge
connectivity problems,” ACM Symposium on Theory of Computing,
pp. 317-327, 1991.

[15] Z. Galil and G.F. Italiano, “Fully dynamic algorithms for 2-edge-
connectivity,” SIAM J. Computing, Vol. 21, pp. 1047-1069, 1992.

[16] D. Eppstein, Z. Galil and G.F. Italiano, “Dynamic graph algorithms,”
Algorithms and Theory of Computation Handbook, CRC Press,
1999.

[17] D. Alberts, G. Cattaneo and G.F. Italiano, “An experimental study
of dynamic graph algorithms,” ACM Journal on Experimental Al-
gorithmics, Vol. 2, 1997.

Time (in milliseconds)
Capacity constraint � Unit weight vertices? EW COD CFOD BSA

3 Yes 235.49 0.04 0.18 0.46
5 Yes 149.88 0.00 0.10 0.30
10 Yes 95.33 0.04 0.12 0.28
20 Yes 64.40 0.06 0.06 0.22

100 No 206.59 0.02 0.14 0.44
200 No 192.41 0.00 0.14 0.36
300 No 158.02 0.08 0.14 0.34
400 No 134.86 0.02 0.04 0.24

TABLE I

AVERAGE RUNNING TIME FOR EACH UPDATE.

2000

2500

3000

3500

4000

4500

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 1. Average cost of the tree after each node update (unit weight
nodes with �����).

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 2. Average cost of the tree after each node update (unit weight
nodes with ����� .)

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 3. Average cost of the tree after each node update (unit weight
nodes with �����
	 .)

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 4. Average cost of the tree after each node update (unit weight
nodes with ������	 .)

3000

3500

4000

4500

5000

5500

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 5. Average cost of the tree after each node update (arbitrary weighted
nodes with �����
	 	 .)

1500

2000

2500

3000

3500

4000

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 6. Average cost of the tree after each node update (arbitrary weighted
nodes with ������	 	 .)

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 7. Average cost of the tree after each node update (arbitrary weighted
nodes with ����� 	 	 .)

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

100 105 110 115 120 125 130 135 140 145 150

C
os

t o
f t

he
 tr

ee

Number of nodes in the tree

Offline EW
COD

CFOD
BSA

Fig. 8. Average cost of the tree after each node update (arbitrary weighted
nodes with ��� � 	 	 .)

