Load-Balanced Agent Activation for
Value-added Network Services

Chao Gong *, Kamil Sarac, Ovidiu Daescu,
Balaji Raghavachari, Raja Jothi

Department of Computer Science, University of Texas at Dallas, Richardson, TX
75083, USA

Abstract

In relation to its growth in size and user population, the Internet faces new chal-
lenges that have triggered the proposals of value-added network services, e.g., IP
multicast, IP traceback, DiffServ, IntServ, etc. In addition, recent advances in pro-
cessor and hardware techniques have enabled the production of high speed and
powerful routers. Therefore, it is not unreasonable to expect the Internet to pro-
vide a variety of value-added network services other than packet forwarding in the
near future. Depending on their purposes, value-added services may improve the
scalability and efficiency of end user applications or may enhance the reliability and
security of the network infrastructure. On the other hand, they may incur non-trivial
overhead on the routers providing these services. It is a thorny problem to reach a
balance between the performance of value-added services and the incurred overhead.
In this paper, we study this problem in the context of both reliable multicast and
distributed denial-of-service (DDoS) defense. In either scenario, a software agent is
activated at some routers in a tree topology to provide the required functionality.
We formulate the problem as load-balanced agent activation problem (LBAAP).
Our goal is to develop a mechanism to activate value-added service agents in the
network for the purpose of reaching a balance between the performance and over-
head. We develop a polynomial time algorithm to solve the LBAAP problem in
single tree case, and propose a heuristic for the LBAAP problem in the case where
multiple trees exist in the network, a problem we conjecture is NP-hard. Finally we
evaluate the performances of various approaches for activating value-added service
agents through simulation.

Key words: Load balancing, value-added service, reliable multicast, DDoS defense

* Corresponding author. Tel.: +1-972-883-2185; fax: +1-972-883-2349.
Email address: gong@student.utdallas.edu (Chao Gong).

Preprint submitted to Elsevier Science 6 December 2006

1 Introduction

During the recent years, several new technologies/services have been pro-
posed/introduced into the Internet. These include quality of service (QoS)
routing [1,2], content delivery networks [3], multicast communication services [4],
and so on. In addition, the increasing rate of denial-of-service (DoS) attacks in
the Internet has clearly shown the need for effective DoS defense mechanisms
most of which require additional support from the network [5-7].

One common characteristic of these technologies is that they introduce ad-
ditional functionalities into the network devices, i.e., routers and/or servers
co-located with routers. In this paper, we refer to this type of additional
functionalities as value-added network services (VAS). VASs are typically im-
plemented as software modules at routers and/or co-located servers. We refer
to this type of software modules as VAS agents. A VAS agent at a network
device can be turned on (activated) or turned off (deactivated). If a VAS
agent is activated at a device, we say that the device hosts the VAS agent.
VAS agents help to improve the performance of end user applications and to
enhance the robustness of the network infrastructure. However, VAS agents
incur non-trivial overhead on the devices hosting them.

In this paper, we use reliable multicast and distributed denial-of-service (DDoS)
defense as example services to study the tradeoff between the VAS performance
and the overhead introduced by VAS agents on the network devices. Our goal
is to develop a mechanism to activate VAS agents on a proper set of network
devices so that (1) VAS performance requirements are satisfied and (2) the
resulting assignment does not cause any load imbalance among the network
devices.

1.1 Reliable Multicast

Reliable multicast is a value-added network service that provides reliable data
transport from a single source to multiple receivers in the Internet. A key
challenge in reliable multicast is scalability. The main difficulty in making
reliable multicast scalable is the feedback message implosion at the multicast
source site. As the number of receivers increases, their feedback messages back
to the source could eventually overwhelm the computing resources and even
the link bandwidth at the source site.

The usual approach to ensure reliable delivery in reliable multicast protocols
is the use of Negative Acknowledgements (NAK). That is, receivers send out
NAK messages to inform the source about packet loss. Compared with Positive
Acknowledgement (ACK), NAK in reliable multicast can alleviate feedback

message implosion at the source as long as the chance of packet loss is lower
than that of successful packet delivery. In a NAK protocol, when a packet
loss occurs close to the source, most of the receivers will detect the loss and
send out NAK messages. The mere amount of these NAKs can easily result
in implosion at the source.

One common approach to avoid feedback implosion at the source site is feed-
back suppression. In this scheme, a VAS agent, called NAK suppression agent,
is set up at internal nodes in a multicast tree. NAK messages are unicasted
from the receiver to its nearest ancestor node hosting a NAK suppression agent
in the multicast tree. The ancestor node then forwards one NAK message to
its nearest agent-hosting ancestor node and suppresses all duplicate NAKs.

NAK suppression agents are helpful for implosion prevention which is a key
issue in reliable multicast. At the same time, however, they incur memory and
processing overhead on routers. A NAK suppression agent must store sequence
number information for each outstanding NAK message to suppress future du-
plicate NAKs. NAK messages are extracted from the IP fast forwarding path
for a more detailed processing at the router where the NAK suppression agent
is activated. The NAK suppression agent examines every received NAK to
decide whether to forward it or to suppress it. Moreover, in order to eliminate
the security vulnerability of false NAKs, the NAK suppression agent needs to
deploy some authentication mechanism [8].

1.2 DDoS Defense

DoS attacks work by flooding some resource (a remote server or network) with
large amounts of traffic, thereby preventing legitimate users from accessing
that resource. A DDoS attack is a type of DoS attack where the attack traffic
originates from multiple sources. (D)DoS attacks are threatening the utility
of the Internet severely [9]. There has been a substantial amount of research
work on defending against (D)DoS attacks.

The goal of IP traceback [5,6] is to construct the attack tree of a DDoS attack,
which is composed of the network paths from attack sources to the victim.
In practice, wily attackers can counterfeit extra routers into the traceback
path [5] and IP traceback may be only partially deployed in the network [10].
Because of these practical limitations, the current IP traceback techniques
can only construct an approximate or incomplete attack tree for a DDoS
attack. Inaccurate attack trees are still valuable to DDoS defense as the defense
measures such as packet filtering can be applied closer to the attack sources.
Due to the possibility of source IP spoofing [11], the effective way to identify
attack traffic is based on destination IP addresses. Blocking attack traffic based

on destination IP addresses usually incurs collateral damage, that is, blocks
the innocent traffic destined to the victim. Therefore, a better DoS defense
measure is rate-limiting, instead of blocking, the attack traffic.

Pushback [7] is a cooperative mechanism in which a router can ask upstream
routers to rate-limit DoS attack traffic. Given an attack tree constructed in
IP traceback process, pushback mechanism can be used to (1) determine the
rate limits for the attack traffic at different routers in the attack tree and
(2) decide when to stop the rate-limiting process. In pushback, a VAS agent,
called aggregate-based congestion control (ACC) agent, is activated at the
routers in an attack tree. The ACC agent at a router periodically reports
local status to the nearest ancestor ACC agent in the attack tree through
a pushback feedback message. After combining the feedback from the nearest
descendent ACC agents and local status, the ACC agent calculates/updates
the rate limits for the attack traffic at the current router and the descendent
routers, and then informs the ACC agents at those descendent routers.

Similar to NAK suppression agents, ACC agents incur memory and processing
overhead on routers. ACC agents keep track of the status of attack traffic and
reconsider rate limiting decisions periodically to update the rate limit for
attack traffic. For each arriving packet, ACC agents need to check whether
that packet belongs to attack traffic, and if so, forward or discard the packet
according to the rate limit for the attack traffic.

1.8 Load-Balanced Agent Activation

In either reliable multicast or DDoS defense, a key problem is to decide where
to activate VAS agents (NAK suppression agents or ACC agents) in a tree
topology (multicast tree or attack tree). On one hand, a trivial approach which
activates a VAS agent at every router in the tree meets VAS performance
requirements (prevent implosion at the reliable multicast source or protect
the victim under DDoS attack from malicious traffic), but leads to excessively
high total memory and processing overhead on the routers. On the other
hand, activating VAS agents at just a few routers in the tree reduces the
total overhead, but may fail to satisfy the performance requirements, or even
worse, may overload some routers with excessive feedback messages, thereby
degrading the performance of packet forwarding for all traffic through those
routers.

In the context of multiple trees, the situation becomes even more complicated.
If many multicast/attack trees pass through a router, the trivial approach
mentioned above will activate a VAS agent for every tree and the resultant
memory requirement could overload the router. A naive solution to avoid the

memory overload on routers is to deactivate the VAS agent for a randomly
chosen tree at the overloaded router. However, such an approach has a defi-
ciency that the casual selection of the tree being “dropped” may impair the
VAS performance or overload other routers in that tree with excessive feedback
messages.

Reaching a compromise between the VAS performance and the overhead of
VAS agents is a complex problem. In this paper we explore a simplified ver-
sion of that problem, referred to as Load-Balanced Agent Activation Problem
(LBAAP). Specifically, the LBAAP problem is

how to determine the number and placement of VAS agents in order to
satisfy VAS performance requirements, with minimal total memory and
processing overhead on routers and without overloading any router.

We examine the LBAAP problem in different contexts, propose corresponding
algorithms, and evaluate the performances of various approaches by simula-
tion.

1.4 Paper Organization

The rest of this paper is organized as follows. In Section 2, we define and
analyze the LBAAP problem. In Section 3, we study the LBAAP problem
and propose algorithms for both single tree case and multiple tree case. In
Section 4, we evaluate the performances of various VAS agent activation ap-
proaches by simulation. In Section 5, we discuss the limitations of our algo-
rithms and possible extensions. We survey related work in Section 6. Finally,
we conclude the paper in Section 7.

2 Preliminaries

In this section, we introduce the models, definitions, and assumptions used in
this paper.

In the context of either reliable multicast or DDoS defense, an agent tree struc-
ture can be constructed for describing the relationship among the involved
entities. In the agent tree of a reliable multicast session, the leaves represent
multicast group receivers and the internal nodes represent routers with NAK
suppression capability. The root of the agent tree corresponds to the edge
router at the multicast session source site. In the context of DDoS defense,
the nodes in the agent tree represent the routers which support ACC agents.
The root of the tree corresponds to the edge router connected to the DDoS

(b)
Fig. 1. (a) Multicast tree. (b) Agent tree.

victim. If we assume that all the routers in the network support value-added
services, then the agent tree overlaps the underlying multicast/attack tree.
Otherwise, it overlays the multicast/attack tree. As an example, Figure 1 il-
lustrates the relationship between a multicast tree and the corresponding agent
tree. The internal nodes in deep color represent routers with NAK suppression
capability. Those NAK suppression capable routers and receivers constitute
an agent tree which overlays the multicast tree. Since the discussion in this
paper is based on the agent tree structure defined above, we will simply refer
to an agent tree in reliable multicast or in DDoS defense as a multicast tree
or an attack tree, respectively.

Given an agent tree, we assume a VAS agent is always activated at the root
and each leaf sends out messages up the tree. We assume that the multicast
source expects to receive one single NAK for a single packet loss event. Hence
a NAK suppression agent is always activated at the root of the multicast tree
in order to guarantee that. As to DDoS defense, we assume that ACC agents
are always activated at all the leaves and the root of the attack tree. The
ACC agent at the root controls the whole DDoS defense scheme on behalf of
the victim. Activating ACC agents at the leaves is to maximize the efficacy
of DDoS defense since the attack traffic is throttled furthest from the victim.
Therefore, the internal nodes except the root of an agent tree has the option
to activate or deactivate VAS agents. Fach leaf and activated agent in the
agent tree sends a feedback message to its nearest ancestor node hosting an
agent.

We also assume that a VAS agent supports only one application instance
(agent tree) and multiple agents need to be activated to handle multiple ap-
plication instances. The majority of the memory overhead introduced by a
VAS agent is the amount of memory recording the application state informa-
tion; the memory foot print of the agent program itself is fixed and negligible.
Hence, having an agent support a single or multiple application instances
makes little difference to the problem discussed in this paper.

(b)

Fig. 2. (a) No agent is activated at any internal node. (b) An agent is activated at
internal node vs.

The number of the children of a particular node in a tree is called the degree
of that node. If a VAS agent is activated at a node in an agent tree, the degree
of that node reflects the lower bound of the number of feedback messages
received by that node. In reliable multicast, the worst case occurs when a
single packet loss near the multicast session source makes every receiver emit
a NAK message toward the source. If a NAK suppression agent is activated
at an internal node in a multicast tree, then the number of NAK messages
received by that node in the worst case will never be less than the degree of
the node. In DDoS defense, each ACC agent sends out a pushback feedback
message up the attack tree every pushback refresh period. If an ACC agent
is activated at a node in an attack tree, the degree of the node gives the
minimal number of pushback feedback messages received by that node during
a pushback refresh period. Consider an internal node v hosting an agent in an
agent tree: the more the agents activated at its children, the less the feedback
messages received by node v. If an agent is activated at each of the children
of v, then the number of feedback messages arriving at node v is the same
as its degree. For example, in Figure 1-b, degree(vy) = 2; if activating agents
at vy and vg, the number of feedback messages received by v; will be also 2;
otherwise, the number will be larger than 2.

The weight of a tree node is defined as follows: if the node is a leaf, its weight is
1; if the node is an internal node hosting an agent, its weight is 1; otherwise its
weight is the sum of the weights of all of its children. We can regard the weight
of a node as the number of feedback messages sent up the tree from/via that
node. Suppose an internal node v is not hosting an agent and its weight is w.
If a VAS agent is activated at node v, then the number of feedback messages
received by node v will be w. In reliable multicast, node v will receive w NAKs
in the worst case. In DDoS defense, node v will receive w pushback feedback
messages every pushback refresh period. The definition of weight is illustrated
in Figure 2. The number beside each node in the agent tree is the weight of the
node. In Figure 2-a, no agent is activated in the tree, so weight(vy) = 141 = 2.
In Figure 2-b, an agent is activated at node vq, so weight(vy) = 1, and the
number of feedback messages received by v, is 2.

We define the processing overhead of an agent to be the number of feedback
messages received by the agent. For example, the processing overhead of an
NAK suppression agent is the number of NAKSs received in the worst case; and
the processing overhead of an ACC agent is the number of pushback feedback
messages received every pushback refresh period. The processing overhead on
a router is the sum of the processing overhead of all agents activated at the
router. We assume that the memory overhead introduced by an agent is con-
stant with a value of 1. Hence the memory overhead on a router is the number
of agents activated at the router. Given an agent tree, each leaf and activated
agent in the tree sends one feedback message to its nearest ancestor node host-
ing an agent. Therefore the total processing overhead equals the sum of the
number of leaves and the number of agents. Thus, minimizing the number of
agents is equivalent to minimizing the total memory and processing overhead
on routers.

The memory load bound on routers specifies the amount of the memory devoted
for the VAS functionality, i.e., how many VAS agents can be activated at a
router. The processing load bound indicates the number of arriving feedback
messages which a router can afford. The processing load bound reflects not
only the amount of computing resources available for value-added services at a
router, but also the amount of link bandwidth available for receiving feedback
messages.

Given certain memory and processing load bounds on the routers through
which an agent tree passes, locating routers to activate VAS agents without
exceeding the specified bounds for memory and processing capabilities pre-
vents overloading routers and achieves load balancing among routers.

In this work, we assume that agent tree topologies are already known. Typ-
ically, Internet service providers (ISPs) have access to multicast/attack tree
information within their domains. Our work concerns VAS agent activation
within a domain. If a multicast/attack tree spans several domains, our algo-
rithms can be used to find an activation of agents in each domain, for the
portion of the tree which spans that domain. In addition, several approaches,
such as tracetree [12] and FIT [13], have been proposed to efficiently and ef-
fectively collect multicast/attack tree topologies in the Internet.

3 Load-Balanced Agent Activation Problem (LBAAP)

We examine the LBAAP problem in both single tree and multiple tree cases
and propose algorithms to solve the problem in these cases.

3.1 Single Tree Case

In the context of a single tree at most one VAS agent needs to be activated at
a router. As long as the memory load bound is not set to be 0, the memory
overhead introduced by an agent will not overload the router. Thus, we do not
consider the memory overhead issue in the single tree case. Since the degree
of an internal node is the lower limit of the processing overhead introduced
by an agent on the node, we assume the processing load bound is never set to
be smaller than the degree of any internal node in an agent tree.

The LBAAP problem in single tree case can be defined as follows. The input
consists of an agent tree T rooted at r and a processing load bound PB. The
processing overhead on an internal node v is represented as pd(v). The goal is
to select a set of internal nodes, R, to activate a VAS agent at each node in
R, satisfying the following conditions:

(1) r € R,
(2) Yv € R,pd(v) < PB, and
(3) the size of R is minimal.

We first show a canonical activation of agents, then present an algorithm to
find such a solution in linear time. Given an optimal activation of VAS agents
in a tree with a processing load bound PB, we can transform this activation
into another optimal activation which satisfies the following two conditions:

(1) For any internal node v which hosts an agent but whose parent p does
not host one, if we deactivate the agent at node v and activate an agent
at v’s parent p, then the processing overhead introduced by the agent on
p will exceed the processing load bound PB.

(2) For any internal node v which hosts an agent and has siblings, the pro-
cessing overhead on node v is not smaller than the weight of any of its
siblings.

Given an optimal agent activation in a tree with processing load bound PB,
we can transform this activation as follows. First we move each agent as high
in the tree as possible without violating the load constraint. In other words,
if an agent is activated at a node v but no agent is activated at v’s parent
p, then the following statement must be true. If we do not activate the agent
at v but activate an agent at its parent p instead, the processing overhead
on p, which is the same as the weight of p when no agents are activated at p
and v, will exceed PB. Otherwise, we can do such transformation to obtain
a new solution with the same number of agents. Second, we move each agent
from the node where it is located to a sibling node whose weight is larger
than the processing overhead introduced by the agent on the current node, if
possible. In other words, if we activate an agent at a child u of a node p, but

/* T is an agent tree rooted at r */
/* PB is a processing load bound */
LBAAP (T, PB) {
pd(r) := ActivateAgent(r)
activate a VAS agent at r

}

/* activate VAS agents in the subtree rooted at v */
/* return weight(v) after the activation */
ActivateAgent(v) {
if v is a leaf node then {
return weight(v)
} else {
weight(v) := 0
for each child u of v do
weight(v) := weight(v) + ActivateAgent(u)
while weight(v) > PB do {
select an internal node child u of v with largest weight
activate a VAS agent at u
pd(u) := weight(u)

weight(v) := weight(v) - weight(u) + 1
weight(u) =1

}

return weight(v)

}
}

Fig. 3. LBAAP algorithm for the single tree case.

not at another child v of p, then it must be the case that pd(u) > weight(v).
Otherwise, we do such transformation and the weights of all ancestors of node
u remain the same or decrease, and then we obtain a new solution with the
same number of agents.

Our algorithm works as below. Given an agent tree T" and a processing load
bound PB, we process tree T in a bottom-up approach. For every internal
node v, if weight(v) > PB, select a child node, u, which is an internal node
with the largest weight among all the children of v, and activate a VAS agent
at u. After that activation, weight(v) reduces to weight(v)—weight(u)+1, and
weight(u) becomes 1. We repeat the operation above until weight(v) < PB,
then go to the next node. The correctness of the algorithm follows from the
argument above on the canonical activation of agents. The running time of
the algorithm is O(n - d), where n is the number of the internal nodes in the
tree, and d is the average degree of all internal nodes. Figure 3 shows the
pseudocode of the algorithm.

10

3.2 Multiple Tree Case

In this section we consider the LBAAP problem in the context of multiple
trees. In the multiple tree case, multiple multicast/attack trees exist in the
network and some routers appear in several trees simultaneously. Consider
multiple agent trees pass through a router v. If the memory load bound is
smaller than the number of trees, router v cannot activate a VAS agent for
every tree, so it has to choose some of the trees for which it would not of-
fer value-added service. A random selection of the tree being “dropped” from
router v may make excessive feedback messages flow to some ancestor router
in that tree. That may overload the ancestor router with excessive feedback
messages. Thus, an intelligent selection of the trees being served is an impor-
tant issue. Since a VAS agent is always activated at the root of an agent tree,
we assume that no router is the root of more than M B agent trees, where M B
is the memory load bound. In other words, a router is connected to at most
M B reliable multicast sources or at most M B victims under DDoS attack.

The LBAAP problem in multiple tree case can be defined as follows. The
input consists of a graph G = (V, E), with V' denoting the set of nodes and F
denoting the set of edges connecting the nodes, and a set T'= {11, T5, ..., T, }
of m agent trees in G. Let V;, = {v € V and v is an internal node of T;(1 <
i < m)}. Each tree T; € T is rooted at r; € V,.. The memory load bound is
M B, and the processing load bound is PB. The memory overhead on a node
v is represented as md(v), and the processing overhead on v is represented as
pd(v). The goal is to select a set of nodes R C V., and for each node v € R,
activate n, (n, > 1) agents on it, satisfying the following conditions:

(1) r; € R, for 1 <i <m,
(2) Yv € R,md(v) < MB,
(3) Yv € R,pd(v) < PB, and
(4) Y ,cr Mo is minimized.

As we will see in Section 3.3, even in a simplified model, the LBAAP problem
in multiple tree case turns out to be much harder than the single tree case. We
conjecture it is NP-hard based on the fact that a minor variation of the multi-
tree LBAAP problem is NP-hard (discussed in the next subsection). Since we
believe the multi-tree LBAAP problem is NP-hard, rather than computing
an optimal solution, in this paper we focus on computing a feasible solution.
Specifically, we propose a heuristic to solve the LBAAP problem in multiple
tree case.

First at all, we define an operation on trees, called node removal. Removing a

node v from a tree T means to remove node v from tree 7" and make all the
children of v to be the children of v’s parent. The root of a tree can not be

11

(b)

Fig. 4. (a) Before removing node vs. (b) After removing node vs.

removed. An example is shown in Figure 4. In practice, removing a node v
from a tree T' corresponds to that router v would not offer value-added service
to tree T

The heuristic proceeds in two steps:

(1)

Tree Selection: For each node v which appears in more than M B trees
as an internal node, we select M B trees to be served by v. The selection
is based on the potential processing overhead on the parent of v in each
tree if a VAS agent is not activated at v for that tree. Let N, denote the
number of the trees in which a node v appears as an internal node. The
selection algorithm is as below. For each node v € V,., if N, < M B, then
all N, trees are selected as candidates which are supported by node v
with VAS agents. Otherwise we need to select M B out of N, trees in the
following way:.

(a) For each tree T; passing through v, if v is the root of T}, select T; as
a candidate.

(b) After step (a), if the number of candidates is smaller than M B, then
for each of the remaining trees, remove node v from the tree. Arrange
these trees into a list in decreasing order according to the degree of
the parent of node v in each tree. Select trees from the beginning
of the list as candidates until the number of candidates increases
to M B. For the trees selected as candidates, undo the operation of
removing node v and restore them to their previous topologies.

Processing Load Bound Assignment: After making the tree selection for

each node v € V,, each tree remains the same size or it changes to a

smaller size tree, by removing some internal nodes. We assign the pro-

cessing load bound L = % to each tree. Then, we apply the LBAAP
algorithm for the single tree case individually on each tree.

Step 1 makes sure that each router supports no more than M B agent trees,
and then the memory load bound is satisfied. Step 2 makes sure the processing

12

overhead on each router is not larger than PB, and then the processing load
bound is satisfied.

When the processing load bound L is smaller than the degree of some internal
node in a tree, the LBAAP algorithm for single tree case can not produce a
solution for agent activation in that tree. When the processing load bound
on routers, PB, is set to be smaller, the processing load bound L assigned to
each tree becomes smaller. When the memory load bound on routers, M B, is
set to be smaller, more nodes are removed from each tree, and the degrees of
some nodes in the trees become larger. Thus, when the memory and processing
load bounds on routers are set to be too small, the LBAAP heuristic for the
multiple tree case may not produce a solution even if there exists one.

3.3 Hardness of Multi-tree LBAAP Problem

We conjecture the LBAAP problem in multiple tree case is NP-hard, as a
minor variation of the multi-tree LBAAP problem is NP-hard.

Consider a graph G = (V, E'), with V denoting the set of nodes and E denoting
the set of edges. Let T'= {T},Ts,...,T,,} be a set of m agent trees in G. Let
V., = {v € V and v is an internal node of T;(1 < i < m)}. Each edge in F
appears in some tree T; and no edges are shared by any two different trees, but
multiple trees may share the same node in V. Multiple VAS agents are allowed
to be activated at a node v € V,. and one agent can support multiple trees, but
each tree passing through node v can be associated with at most one agent at
v. There is no memory load bound or processing load bound on nodes. Instead,
we set the processing load bound L on agents. The objective is to activate as
few agents as possible such that no agent has a processing overhead more than
L. We call this problem V-LBAAP. Clearly, this is a variant of the multi-tree
LBAAP problem.

Since the trees in T' do not share edges, we can treat each tree T; € T inde-
pendently and compute an optimal agent activation for T; using the LBAAP
algorithm for the single tree case. Suppose we already finished executing the
LBAAP algorithm for each tree in T'. Then, at each node v, the number of
agents is k, (0 < k, < m) such that each agent supports just one tree. In the
V-LBAAP problem, an agent may support multiple trees as long as its pro-
cessing overhead does not exceed L. So we would like to minimize the number
of agents at each node by making single agent support multiple trees without
violating the load constraint, thereby minimizing the total number of agents.

The task of minimizing the number of agents at a node can be formulated
as follows. The input consists of a finite collection of n integers dq,...,d,,
and an upper bound L (L > d;, for 1 < i < n). These integers represent the

13

processing overheads of the agents each of which supports just one tree. L
is the processing load bound on agents. The goal is to decide the minimum
number of groups into which the integers can be assigned such that the sum
of the integers in each group does not exceed the bound L. This is precisely
the integer bin packing problem which is known to be NP-hard [14].

4 Evaluations

We evaluate the performances of various VAS agent activation approaches
by simulation in the context of both a single tree and multiple trees. To the
best of our knowledge, the LBAAP problem has not been addressed before.
So we compare the algorithms presented in the previous section with some
approaches proposed by ourselves.

The metrics used to evaluate the performance are total memory overhead and
total processing overhead on routers. In the single tree case, as we mentioned
in Section 2, the total memory overhead equals the number of VAS agents,
and the total processing overhead equals the sum of the number of leaves and
the number of agents. In the multiple tree case, the total memory overhead
is the sum of the total memory overhead in all trees, and the total processing
overhead is the sum of the total processing overhead in all trees. In other
words, the fewer the VAS agents, the lower the total memory and processing
overhead.

Because the research on DDoS defense is at an early stage, there is no data
available on attack tree topologies. So we experiment on activating NAK sup-
pression agents in multicast trees in simulation. We believe we would get the
similar simulation results in the context of DDoS defense.

4.1 Single Tree Case

For the single tree case, we evaluate three VAS agent activation approaches.
The first approach is the LBAAP algorithm for the single tree case, presented
in Section 3.1. The second approach, called full deployment (FD) approach, is
to activate a VAS agent at every internal node in the agent tree. And the third
approach, called branching point deployment (BPD) approach, is to activate a
VAS agent at every branching point in the agent tree.

The simulation is based on the real multicast tree topologies collected by
Chalmers et al. using mwalk [15]. Table 1 shows the multicast trees used in
the simulation. Each tree is presented with the number of internal nodes, the

14

‘ Tree ‘ # of Internal Nodes ‘ # of Leaves ‘ Highest Degree ‘

11

11
32
30
71

71

50
49

99

100
247
248
497
496
993
992

163
207
255
271
427
453

587
598
762

774

10

Table 1

Multicast Trees.

FD Approach

BPD Approach

LBAAP Algorithm
H

10000

1000 E
100 E

pesyianQ Alows [e1oL

Multicast Tree

Fig. 5. Single Tree Case: Total Memory Overhead.

-
oo

- _||

= R S—

-] —

v

- [E—

]

o [—
N S
| i _

R -

L £ -

sE —=
c6E
&

1885 4
28 -
2g<
pAM .

<oz =
o m -
Lo

1 1 1 1 1 1 1
o o o o o o o o
o n o n o [Te) o Te)
o ~ n N o ~ n N
N — — — —

peaysanQ Buissasold [elo]

10

Multicast Tree

Fig. 6. Single Tree Case: Total Processing Overhead.

number of leaves, and the highest degree of all nodes. We set the processing

load bound on routers to be the highest degree of all nodes, because none of

these three approaches can find a feasible solution for agent activation with a

lower processing load bound.

Figure 5 shows the results of the total memory overhead incurred by these

15

three agent activation approaches. X-axis denotes the multicast tree used in
the simulation, and Y-axis denotes the total memory overhead on routers.
The Y-axis is in logarithmic scale. The FD approach results in the highest
total memory overhead, the BPD approach results in lower overhead, and the
LBAAP algorithm results in the lowest overhead with a significant difference
compared to the other two approaches. Figure 6 shows the results of the total
processing overhead. We have a similar observation: the LBAAP algorithm
results in the lowest total processing overhead among these three approaches.
These results demonstrate that the LBAAP algorithm for the single tree case
leads to smaller total memory and processing overhead on routers compared
with the FD and BPD approaches.

4.2 Multiple Tree Case

For the multiple tree case, we compare the LBAAP heuristic, presented in
Section 3.2, with two alternative agent activation approaches. These two ap-
proaches are the extended FD and BPD approaches for the single tree case,
respectively. The extended FD (EFD) approach is to activate a VAS agent at
every internal node in each agent tree, and deactivate randomly chosen agents
at routers when the memory overhead on the routers exceeds the memory
load bound. The extended BPD (EBPD) approach is to activate a VAS agent
at every branching point in each agent tree, and deactivate randomly chosen
agents at memory overloaded routers.

The solution given by the LBAAP heuristic is always a feasible solution for
agent activation, though the LBAAP heuristic can not produce a solution
when the memory and processing load bounds are too small. The other two
approaches always produce a solution no matter what values the memory
and processing load bounds are, but the solution may not be feasible. These
two approaches only consider memory load bound, omitting the processing
load bound. A random selection of the agent being deactivated may make
excessive feedback messages flow to some ancestor router in the agent tree so
that the processing overhead introduced by the agents on that router exceeds
the processing load bound.

In the multiple tree case, the simulation needs to be based on multiple trees
within a network. The multicast trees generated by mwalk are rooted at the
same router. Contrary to the single tree case, the mwalk data can not represent
a realistic scenario for the evaluation in the multiple tree case. Because of this
reason, we use synthetic multicast tree topologies in the simulation. We create
ten transit-stub graphs using the Georgia Tech Internetwork Topology Models
(GT-ITM) [16] to simulate network topologies. The sizes of those graphs range
from 95 to 980 nodes. Given a transit-stub graph, we randomly choose one

16

Group | Net | SumR | SumL | N1 | N2 [N3 | N4 |

1 95 152 101 5 13 19 16
2 180 306 207 11 13 39 38
3 280 404 228 10 37 42 48
4 380 547 353 23 67 62 51
5 475 724 490 12 63 95 75
6 580 717 527 43 96 110 | 38
7 680 1093 722 20 97 130 | 122
8 780 1169 805 43 95 132 | 135
9 870 1419 1003 18 95 162 | 181
10 980 1563 1047 37 | 113 | 188 | 184

Table 2
Multicast Tree Groups.

10000

T T T T
EFD Approach ~ -------
EBPD Approach —_—
LBAAP Heuristic -

1000 | i o 4

wp bR L

Total Memory Overhead

0 |

1 CLE e L |:‘ ARENSEENENENE
1 2 3 4 5 6 7 10
Multicast Tree Group

[ee]
©

Fig. 7. Multiple Tree Case: Total Memory Overhead (4 Multicast Trees, Memory
Load Bound = 2).

node as multicast source and multiple nodes as receivers of a multicast group
from stub domains in that graph. We use the Network Simulator (ns-2) [17]
to simulate the multicast session and extract the multicast forwarding path
as a multicast tree over the network topology. For each network topology,
we generate four multicast trees to form a group as the input for the agent
activation procedure. Table 2 shows the multicast tree groups used in the
simulation. The first column in the table is the group number, the second
column is the size of the network from which a group of trees are created,
the third column is the sum of the internal nodes of all trees in a group, the
fourth column is the sum of the leaves of all trees in a group, and the remaining
columns are the numbers of routers in the network through which 1, 2, 3, and
4 multicast trees pass, respectively.

In the simulation, we set the memory load bound on routers to be 2 and 3,
respectively. For each memory load bound, we set the processing load bound to
be the smallest value such that the LBAAP heuristic can produce a solution.
Figures 7 and 8 show the results of the total memory overhead incurred by

17

T T T
R
- _|rw‘w‘www\\\\h
- _|rw‘w‘www\\\\h
| I
|
! I
,
I 1l T T T T T T
! C oo oo oo
Lo e
T
F =L I
=9
]
895 o
|me —
Q.
o<,
<An (it
|mww ‘‘‘‘‘ |
i
[T
1 1 1
o o o o
o o o -
o (=) —
o —
—

pesysanQ Alows e1oL

10

Multicast Tree Group

Fig. 8. Multiple Tree Case: Total Memory Overhead (4 Multicast Trees, Memory

Load Bound = 3).

T T T T T T T T
- []
- - ———————4
[
L o
JER——
- |
-] | —
N =
! 3
| L——
P
! ...
e —
Sse e
§95 oo
L jo N =
Sge i —
D.AP \\\\\\\
<aog ol
FOQ < =
UL om [
w4
1 1 1 1 1 1 1 1
o o o o o o o o o
[Te) o Te) o Te) o n o [Te)
N o N~ n N o ~ n N
N N - — - —

peayIanQ Buissanold [e1o]

10

Multicast Tree Group

Fig. 9. Multiple Tree Case: Total Processing Overhead (4 Multicast Trees, Memory

Load Bound = 2).

T T T T T T T T T
o e
[
- _||
|
[P
o T
o | EE——
- R e—
[P
- —
|) S
1
I |
| i o
b [—
s82 e
% o5 [
LScs® =
5aT R —
o<y T
< o< =
Im WA =
z 9
wwa -1
1 1 1 1 1 1 1 1 1
O O 9 O O O 9 O © O
S H & W O nm S mw O m
D N O~ I A & N DO
N N N — - -

peaysanQ Buissasold [eio]

10

Multicast Tree Group
18

Fig. 10. Multiple Tree Case: Total Processing Overhead (4 Multicast Trees, Memory

Load Bound = 3).

these three agent activation approaches, with the memory load bound set
to be 2 and 3, respectively. X-axis denotes the multicast tree group used in
the simulation, and Y-axis denotes the total memory overhead on routers.
The Y-axis is in logarithmic scale. The EFD approach results in the highest
total memory overhead, the EBPD approach results in lower overhead, and
the LBAAP heuristic results in the lowest overhead. Figures 9 and 10 show
the results of the total processing overhead, with the memory load bound set
to be 2 and 3, respectively. We observe similar results: the LBAAP heuristic
results in lower total processing overhead than the other two approaches. These
results demonstrate that the LBAAP heuristic for the multiple tree case leads
to smaller total memory and processing overhead on routers compared with
the EFD and EBPD approaches.

Since the EFD and EBPD approaches omit the processing load bound and
work with randomness, for the same multicast tree topologies and memory
load bound, each time the produced solution for agent activation is different,
and may or may not satisfy the processing load bound requirement. For a
given memory load bound, we execute both EFD and EBPD approaches for
20 times, each time collecting the highest value of the processing overhead on
routers. For each memory load bound, we also run the LBAAP heuristic and
collect the highest processing overhead on routers, with the processing load
bound set to be the smallest value such that the LBAAP heuristic can produce
a solution. Given a solution for agent activation, if the processing overhead
on some router exceeds the processing load bound, then that router will be
overloaded by excessive feedback messages and the solution is not feasible.

Figures 11 and 12 show the results of the highest processing overhead on
routers. X-axis denotes the multicast tree group used in the simulation, and
Y-axis denotes the highest processing overhead on routers. In the figures,
the horizontal bar represents the lowest processing load bound such that the
LBAAP heuristic can produce a solution; the point represents the highest pro-
cessing overhead on routers in the solution produced by the LBAAP heuristic;
finally, two vertical bars represent the range of the highest processing over-
head on routers produced by the EFD and EBPD approaches, respectively.
In Figure 11, the memory load bound is set to be 2, and the processing load
bound is set to be the smallest value such that the LBAAP heuristic can pro-
duce a solution, which is always feasible. The EFD and EBPD approaches
hardly produce a solution for agent activation wherein the highest value of
the processing overhead on routers is less than the processing load bound. In
Figure 12, the memory load bound is set to be 3, and the processing load
bound is still set to be the smallest value such that the LBAAP heuristic can
find a feasible solution. In most cases the EFD and EBPD approaches find a
feasible solution, but sometimes fail to find a feasible solution.

Based on the simulation results, we can find that the (E)FD and (E)BPD

19

T T T T T T T T T T
Processing Load Bound —t o o
. EFD Approach = ! !
& 100 [FEBPD Approach A ; o
£ LBAAP Heuristic X i i
9] H i i
6 80 | : i i B
g ? e
g eor o 14 s
S A m L i
Y S O A e B S
? n| o 4 [N —x— X
g | ‘w} —
2 20 ik X ‘ s
O 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Multicast Tree Group

Fig. 11. Multiple Tree Case: Highest Processing Overhead (4 Multicast Trees, Mem-
ory Load Bound = 2).

80 T T T T T T T T T T
Processing Load Bound —

- EFD Approach -B-
8 EBPD Approach —a--
£ 60 LLBAAP Heuristic X o -
[T
S - 8 ¥
2 . s
@ — o e
o 40 o “ R
8 % L ok om
<] ; — X i
Solaen -
8 20 & ik i -
ey I I
2 '
T

1 2 3 4 5 6 7 8 9 10
Multicast Tree Group

Fig. 12. Multiple Tree Case: Highest Processing Overhead (4 Multicast Trees, Mem-
ory Load Bound = 3).

approaches for VAS agent activation are simple and easy to implement, but
lead to high total memory and processing overhead on routers. The VAS agent
activation algorithms proposed in this paper are more complex than the other
two approaches, but lead to lower total memory and processing overhead on
routers. Furthermore, in the context of multiple trees, when routers do not
have abundant memory and computing resources for VAS agents, that is,
when the memory and processing load bounds are low, the EFD and EBPD
approaches can not find a feasible solution for agent activation, whereas the
LBAAP heuristic can still produce a feasible solution.

5 Discussion

The VAS agent activation algorithms proposed in this paper take agent tree
topologies as the input. The deployment of these algorithms in practice can be

20

done in a centralized manner. That is, the algorithms are implemented on a
central server, which collects the agent tree topologies, invokes the algorithms,
and then commands the relevant routers to activate VAS agents.

In this paper, we assume that multicast/attack tree topologies are known to
us. Previous work [12,13] studied how to efficiently collect multicast/attack
tree topologies in the Internet. The algorithms proposed in this paper can be
executed in polynomial time in a centralized manner. It takes one more RTT
for the central server to command the selected routers to activate agents. So,
the time for agent activation process stays within acceptable limits.

In reliable multicast, the centralized manner may be inefficient if the multicast
group is dynamic. When the multicast tree topology varies frequently, the
overhead of the algorithms on computing resources and network bandwidth
will increase noticeably. On one hand, in most applications that use reliable
multicast, such as one-to-many reliable file transfer, the set of receivers is
mostly static and is known to the source in advance. As a result, the tree
topology of a reliable multicast session is relatively stable during the lifetime
of the session. On the other hand, if the structure of a multicast tree changes
partially, i.e., in a subtree, the agent activation algorithms can be applied to
the subtree to compute a new solution for agent activation in that subtree.
Through combining this new solution for the subtree and the old activation
of agents in the rest of the tree, we can get a new solution for the whole tree.
When applying the agent activation algorithms to a subtree instead of the
whole tree, the overhead on both computation and bandwidth is reduced. For
instance, a router v hosts an agent for a multicast session. When the agent
receives more NAKs than its upper limit, v sends a request to the server to
ask for recomputing the activation of agents in the subtree rooted at v. The
server will collect the current topology of the subtree, invoke agent activation
algorithms, and activate agents in the subtree.

In DDoS defense, the attack tree is relatively stable. Moreover, even an inac-
curate attack tree is still useful for defending against DDoS attacks.

Several areas remain to be addressed in future work. One is to generalize the
LBAAP problem by allowing different nodes to have different load bounds,
and develop corresponding algorithms. Even in the context of a single tree, the
generalized LBAAP problem is much harder. Another extension of our work
is to develop a VAS agent activation approach which works in a distributed
manner. That is, given a tree, each router makes decisions on agent activation
locally, based on the information from its parent, children, and siblings in the
tree.

21

6 Related Work

From a theoretical standpoint, the LBAAP problem resembles two well-known
graph theoretic problems: the k-median problem and the facility location prob-
lem. Given a graph with n nodes, the k-median problem is to select k out of
n nodes as service centers so as to minimize the sum of the cost of each node
accessing its nearest service center. Tamir [18] studied the k-median problem
in a tree topology and proposed an optimal algorithm. Li et al. [19] used a
similar approach to optimally place web proxies in a tree topology with a
web server at the root. Their objective is to minimize the overall latency in
serving client requests from the leaves of the tree. Qiu et al. [20] studied the
same problem in a graph topology and proposed various heuristics. Krishnan
et al. [21] studied the problem of optimal placement of web caches. Their goal
is to minimize the overall flow or the average delay by placing a given number
of caches into network. Shah et al. [22] studied the k-median problem in the
context of content-based multicast. They defined a filter placement problem
as a variation of the k-median problem and provided two algorithms for op-
timal filter placement with the objective of minimizing mean total network
bandwidth utilization and mean information delivery delay.

In the facility location problem, besides the cost of accessing the nearest service
center (facility), there is also a cost of building a facility onto a node to make
it become a service center. The objective is to find a solution (including both
the number and locations of the facilities) of minimum total cost [23]. Guha et
al. [24] introduced the Load Balanced Facility Location Problem wherein the
constraint of having a minimum load on facility nodes is added to the original
definition of the facility location problem. They proved that this version of
the problem is NP-complete and presented a constant factor approximation
algorithm for it.

With respect to practical aspects, Papadopoulos et al. [25] investigated the
performance of reliable multicast under various deployment strategies of the
supporting functionality. Many studies have been done on the placement of
other kinds of functionality agents in the context of reliable multicast [26,27].
The objective of these works is to reduce the number of retransmissions, la-
tency, and resource utilization. In contrast, our work is to activate a set of
NAK suppression agents in the multicast tree topologies of currently existing
reliable multicast sessions, minimizing the total overhead and satisfying the
load constraints on routers. Moreover, our work is a first step in exploring
the tradeoff between the performance and overhead of network-assisted DoS
defense mechanisms.

22

7 Conclusion

In this paper, we have explored the relationship between the performance of
value-added network services (VAS) and the overhead imposed on routers by
the VAS agents realizing those services. In particular, we have discussed the
load-balanced agent activation problem (LBAAP) derived from the context of
both reliable multicast and DDoS defense. The goal of the LBAAP problem
is to activate VAS agents in the network with a manner that not only satisfies
performance requirements but also avoid load imbalance among routers. We
have developed a polynomial running time algorithm for the LBAAP problem
in single tree case, and have proposed a heuristic for the LBAAP problem
in multiple tree case. Finally we have evaluated the performances of various
approaches for VAS agent activation through simulation.

Reliable multicast and DDoS defense are among many Internet services that
require or greatly benefit from the aid of various VAS agents located at
routers. Those agents introduce non-trivial overhead on the routers hosting
them. Reaching a balance between the performance of those services and the
overhead incurred by the VAS agents is a task worth delving.

References

[1] S. Shenker and J. Wroclawski, General characterization parameters for
integrated service network elements, Internet Engineering Task Force, RFC
2215, September 1997.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An
architecture for differentiated services, Internet Engineering Task Force, RFC
2475, December 1998.

[3] B. Krishnamurthy, C. Wills, and Y. Zhang, On the use and performance of
content distribution networks, in Proc. of SIGCOMM Workshop on Internet
Measurement, San Francisco, USA, pp. 169-182, November 2001.

[4] K. Almeroth, The evolution of multicast: From the MBone to inter-domain
multicast to Internet2 deployment, IEEE Network, vol. 14, no. 1, pp. 10-20,
January/February 2000.

[5] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, Network support for IP
traceback, IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 226237,
June 2001.

[6] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, B. Schwartz,
S. Kent, and W. Strayer, Single-packet IP traceback, IEEE/ACM Transactions
on Networking, vol. 10, no. 6, pp. 721-734, December 2002.

23

[7] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker,
Controlling high bandwidth aggregates in the network, ACM SIGCOMM
Computer Communications Review, vol. 32, no. 3, pp. 62-73, July 2002.

[8] J. Gemmell, T. Montgomery, T. Speakman, N. Bhaskar, and J. Crowcroft, The
PGM reliable multicast protocol, IEEE Network, vol. 17, no. 1, pp. 16-22,
January/February 2003.

[9] L. Garber, Denial-of-service attacks rip the Internet, IEEE Computer, vol. 33,
no. 4, pp. 12-17, April 2000.

[10] C. Gong, T. Le, T. Korkmaz, and K. Sarac, Single packet IP traceback in AS-
level partial deployment scenario, in Proc. of IEEE GLOBECOM, St. Louis,
USA, November 2005.

[11] Computer Emergency Response Team, IP spoofing attacks and hijacked
terminal connections, CERT Advisory CA-95. 01, January 1995.

[12] K. Sarac and K. Almeroth, Tracetree: A scalable mechanism to discover
multicast tree topologies in the Internet, IEEE/ACM Transactions on
Networking, vol. 12, no. 5, pp. 795-808, October 2004.

[13] A. Yaar, A. Perrig, and D. Song, FIT: Fast Internet traceback, in Proc. of IEEE
INFOCOM, Miami, USA, pp. 1395-1406, March 2005.

[14] S. Skiena, The Algorithm Design Manual, Springer-Verlag, 1998.

[15] R. Chalmers and K. Almeroth, On the topology of multicast trees, IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 153-165, February 2003.

[16] K. Calvert, M. Doar, and E. Zegura, Modeling Internet topology, IEEE
Communications Magazine, vol. 35, no. 6, pp. 160-163, June 1997.

[17] K. Fall and K. Varadhan, ns Notes and Documentation, UC Berkeley, LBL,
USC/ISI, and Xerox PARC, http://www.isi.edu/nsnam/ns.

[18] A. Tamir, An O(pn?) algorithm for the p-median and related problems on tree
graphs, Operations Research Letters, vol. 19, no. 2, pp. 59-64, March 1996.

[19] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, On the optimal placement
of Web proxies in the Internet, in Proc. of IEEE INFOCOM, New York, USA,
pp- 1282-1290, April 1999.

[20] L. Qiu, V. Padmanabhan, and G. Voelker, On the placement of Web server
replicas, in Proc. of IEEE INFOCOM, Anchorage, USA, pp. 1587-1596, April
2001.

[21] P. Krishnan, D. Raz, and Y. Shavitt, The cache location problem, IEEE/ACM
Transactions on Networking, vol. 8, no. 5, pp. 568-582, October 2000.

[22] R. Shah, R. Jain, and F. Anjun, Efficient dissemination of personalized
information using content-based multicast, in Proc. of IEEE INFOCOM, New
York, USA, pp. 930-939, April 2002.

24

[23] K. Jain and V. Vazirani, Approximation algorithms for metric facility location
and k-median problems using the primal-dual scheme and lagrangian relaxation,
Journal of the ACM, vol. 48, no. 2, pp. 274-296, March 2001.

[24] S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement and network
design problems, in Proc. of IEEE Symposium on Foundations of Computer
Science, Redondo Beach, USA, pp. 603-612, November 2000.

[25] C. Papadopoulos and E. Laliotis, Incremental deployment of a router-assisted
reliable multicast scheme, in Proc. of International Workshop on Networked
Group Communications, Palo Alto, USA, pp. 3746, November 2000.

[26] S. Guha, A. Markopoulou, and F. Tobagi, Hierarchical reliable multicast:
Performance analysis and placement of proxies, Computer Communications,
vol. 26, no.18, pp. 2070-2081, December 2003.

[27] P. Ji, J. Kurose, and D. Towsley, Activating and deactivating repair servers in
active multicast trees, in Proc. of Tyrrhenian International Workshop on Digital
Communications, Toarmina, Italy, pp. 507-523, September 2001.

25

