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Abstract. Given an undirected graph G = (V, E) with non-negative
costs on its edges, a root node r € V, a set of demands D C V with
demand v € D wishing to route w(v) units of flow (weight) to r, and
a positive number k, the Capacitated Minimum Steiner Tree (CMStT)
problem asks for a minimum Steiner tree, rooted at r, spanning the
vertices in DU{r}, in which the sum of the vertex weights in every subtree
hanging off r is at most k. When D = V| this problem is known as the
Capacitated Minirmmum Spanning Tree (CMST) problem. Both CMStT and
CMST problems are NP-hard. In this paper, we present approximation
algorithms for these problems and several of their variants in network
design. Our main results are the following.

— We give a (ypst + 2)-approximation algorithm for the CMStT prob-
lem, where = is the inverse Steiner ratio and psr is the best achiev-
able approximation ratio for the Steiner tree problem. Our ratio
improves the current best ratio of 2psr + 2 for this problem.

— In particular, we obtain (y + 2)-approximation ratio for the CMST
problem, which is an improvement over the current best ratio of 4
for this problem. For points in Fuclidean and Rectilinear planes, our
result translates into ratios of 3.1548 and 3.5, respectively.

— For instances in the plane, under the L, norm, with the vertices
in D having uniform weights, we give a non-trivial (%psrp + %)—
approximation algorithm for the CMStT problem. This translates
into a ratio of 2.9 for the CMST problem with uniform vertex weights
in the L, metric plane. Our ratio of 2.9 solves the long standing open
problem of obtaining a ratio any better than 3 for this case.

1 Introduction

In this paper, we consider the Capacitated Minimum Steiner Tree (CMStT) prob-
lem, one of the extensively-studied network design problem in telecommunica-
tions. The CMStT problem can formally be defined as follows.

CMStT: Given an undirected graph G = (V, E) with non-negative costs on
its edges, a root node r € V, a set of demands D C V with with demand v € D
wishing to route w(v) units of flow (weight) to r, and a positive number k, the
Capacitated minimum Steiner tree (CMStT) problem asks for a minimum Steiner
tree, rooted at 7, spanning the vertices in DU{r}, in which the sum of the vertex
weights in every subtree hanging off r is at most k.

* Full version of the paper available at http://www.utdallas.edu/~raja/Pub/cmst .ps.
Research supported in part by the NSF under grant CCR-9820902.



The capacity constraint k& must be at least as much as the largest vertex
weight for the CMStTproblem to be feasible. The CMStT problem is NP-hard as
the case with & = oo 1s the minimum Steiner tree problem, which is NP-hard.
When D = V| the CMStT problem is the well-known Capacitated Minimum
Spanning Tree (CMST) problem. The CMST problem is NP-hard [3, 8] even for
the case when vertices have unit weights and & = 3. The problem is polynomial-
time solvable if all vertices have unit weights and £ = 2 [3]. The problem can
also be solved in polynomial time if vertices have 0,1 weights and & = 1, but
remains NP-hard if vertices have 0,1 weights, £ = 2 and all edge lengths are 0
or 1 [3]. Even the geometric version of the problem, in which the edge costs are
defined to be the Euclidean distance between the vertices they connect, remains
NP-hard.

The CMST problem has been well studied in Computer Science and Op-
erations Research for the past 40 years. Numerous heuristics and exact algo-
rithms have been proposed (see full version of paper http://www.utdallas.
edu/"raja/Pub/cmst.ps for survey on the literature). Although most of the
heuristics solve several well known instances close to optimum, they do not pro-
vide any approximation guarantee on the quality of the solutions obtained. Exact
procedures are limited to solving smaller instances because of their exponential
running time. In this paper, we present improved approximation algorithms for

the CMStTand CMST problems and their variants.

1.1 Previous results

For the CMST problem with uniform vertex weights, Gavish and Altinkemer [4]
presented a modified parallel savings algorithm (PSA) with approximation ratio
4—1/(2M°8*1=1) Tn 1988, Altinkemer and Gavish [1] gave improved approxima-
tion algorithms with ratios 3 — % and 4 for the uniform and non-uniform vertex
weight cases, respectively. They construct a traveling salesman tour (TSP) with
length of at most twice the minimum spanning tree (MST), and partition the
tour into segments (subtrees) of weight at most k. Partitioned subtrees are then
connected to the root vertex using direct edges. Hassin, Ravi and Salman [6]
presented algorithms for the 1-cable Single-Sink Buy-at-Bulk problem. The al-
gorithms in [1] and [6] can be used to obtain ratios of 2psr + 1 and 2pgp + 2 for
the respective uniform and non-uniform vertex weight CMStT problems.

1.2 Owur contributions

In this paper, we solve the long-standing open problem of obtaining better ap-
proximation ratios for the CMST problem. Our main results are the following.

— Wegive a (ypsr+2)-approximation algorithm for the CMStT problem, where
~ is the inverse Steiner ratio' and pst is the best achievable approximation
ratio for the Steiner tree problem. Our ratio improves the current best ratio
of 2pst + 2 for this problem.

— In particular, we obtain (y 4 2)-approximation ratio for the CMST problem,
which is an improvement over the current best ratio of 4 for this problem.

The Steiner ratio is the maximum ratio of the costs of the minimum cost Steiner
tree versus the minimum cost spanning tree for the same instance.



For points in Euclidean and Rectilinear planes, our result translates into
ratios of 3.1548 and 3.5, respectively.

— For instances in the plane, under the L, norm, with the vertices in D having
uniform weights, we give a non-trivial (Zpsr + 2)-approximation algorithm
for the CMStT problem. This translates into a ratio of 2.9 for the CMST
problem with uniform vertex weights in the L, metric plane. Our ratio of
2.9 solves the long standing open problem of obtaining a ratio any better
than 3 for this case.

— For the CMST problem, we show how to obtain a 2-approximation for graphs
in metric spaces with unit vertex weights and k£ = 3,4.

— For the budgeted CMST problem, in which the weights of the subtrees hanging
off r could be up to ak instead of k& (a > 1), we obtain a ratio of v + %

Of the above results, the 2.9-approximation result for the CMST problem is
of most significance. This is due to the fact that obtaining a ratio any better
than 3 for graphs defined in the Euclidean plane (with uniform vertex weights)
is not straightforward. There are several ways one can obtain a ratio of 3 for
this problem ([1], modified algorithm of [6], our algorithm in Section 3.1). But
the question was whether one can ever obtain a ratio smaller than 3 — o(1) for
this version of the CMST problem. We present an example (in Section 4), which
shows that, with the currently available lower bounds for the CMST problem, it
is not possible to obtain an approximation ratio any better than 2. We introduce
a novel concept of X-trees to overcome the difficulties in obtaining a ratio better
than 3.

Achieving ratios better than 3 and 4 for the uniform and non-uniform vertex
weighted CMST problems, respectively, has been an open problem for 15 years
now. One major reason for the difficulty in finding better approximations is that
there is no non-trivial lower bound for an optimal solution. There are instances
for which the cost of an optimal solution can be as much as £2(n/k) times than
that of an MST. Inability to find better lower bounds has greatly impeded the
process of finding better approximation ratios for this problem. Even though we
were not able to completely eliminate the use of MST as a lower bound, we found
ways to exploit its geometric structure, thereby achieving better performance
ratios. Unlike the algorithms in [1], in which the MST lower bound contributes
a factor of 2 to the final ratio, our algorithms minimizes the use of MST lower
bound, thereby achieving better ratios.

2 Preliminaries

Let |uv| denote the distance between vertices u and v. Length of an edge is also
its cost. The terms points, nodes and vertices will be used interchangeably in this
paper. For a given k, let OPT and APP denote optimal and approximate solu-
tions, respectively, and let C,,; and Cgpp denote their respective costs. Let Chyop
and Cgp denote the costs of an MST and an optimal Steiner tree, respectively.

In a rooted tree T, let T, denote the subtree rooted at v. Let Cr denote the
cost of tree T'. Let w(v) denote the weight of vertex v, and let w(7,) denote the
sum of vertex weights in the subtree rooted at v. For the CMStT problem, the



weight of a vertex the is not in D is assumed to be 0. By weight of a subtree,
we mean the sum of the vertex weights in that subtree. We call as spokes, the
edges incident on r of a CMStT. By level of a vertex, in a tree T rooted at r, we
mean the number of tree edges on its path to r (also known as depth).

By “metric completion” of a given graph (whose edges obey triangle in-
equality) we refer to a complete graph. Throughout this paper, without loss of
generality, we assume that the metric completion of the input graph is avail-
able, and that the weights of vertices in V\D is zero. All our algorithms in this
paper are for the CMStT problem—a generalization of the CMST problem. The
following lemma gives a lower bound on the cost of an optimal solution.

Lemma 1. Copp; > %ZUEV w(v)[rv|.

3 CMStT algorithms

We first construct a pgr-approximate Steiner tree 7' spanning all the vertices in
Du{r}, and then root T at the root vertex r. Next, we prune subtrees of weight
at most k£ in a bottom-up fashion, and add edges to connect r to the closest node
in each of the pruned subtrees. In simple terms, we basically cut 7" into subtrees
of weight at most k& and connect them to the root vertex.

It is safe to assume that nodes have integer weights. The assumption is not
restrictive as any CMStT problem with rational weights can be converted to
an equivalent problem with integer node weights. The optimal solution for the
scaled problem is identical to that of the original problem [1].

Since our algorithm for the uniform vertex weights case is quite complex, we
first present the algorithm for the general case (non-uniform vertex weights),
which will help in an easier understanding of our algorithm for the uniform
vertex weights case. Note that all our algorithms start with a pgp-approximate
Steiner tree of constant degree. Before we proceed to the algorithms, we present
the following important lemma.

Lemma 2. For a given graph G = (V, E), a set of demands D CV,r €V, and
ak, let Ty be a feasible CMStT and let t1,ta, ..., ty be the subtrees hanging off
rin Ty. Let w(ty) be the weight of a minimum weight subtree t, hanging off r.
For all 1, if the cost of the edge connecting subtree t; to v s minimal, then the
cost Csp of all the edges incident on v (spokes) in Ty is at most k/w(ty) times
the cost of an optimal solution.

Proof. Let I' be the set of vertices in t1,...,t,,. For all ¢, let v; be the vertex in
t; through which ¢; is connected to r. Recall that edge rv; is a spoke, and that
it is a minimal cost edge crossing the cut between r and ¢;. Then,

Pover, WOrvl _ Dver, w(v)lry]
Ywer,wlv) = wlty)

The cost of the all the edges incident on r is given by

[rv;| <
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wity) X Copt. (by Lemma 1)
3.1 Non-uniform vertex weights

The algorithm given below outputs a feasible CMStT for a given instance, whose
edges obey triangle inequality. Note that during the course of the algorithm, we
replace real vertices with dummy vertices of zero weight. These dummy vertices
can be thought of as Steiner points. In the algorithm, we use ¢; to denote the
subtree rooted at child i of vertex v, and p, to denote v’s parent.

Algorithm CMStT-NoNUNIFORM

Input: psp-approximate Steiner tree T rooted at r.

1. Choose a maximum level vertex v # r such that w(T,) > k. If there exists
no such vertex then STOP.

2. If w(Ty) = k, then replace the Steiner tree edges incident on the vertices in
T, with edges of a minimal cost tree 7 spanning only the vertices in 7, N D.
Add a new edge connecting r to the closest vertex in 7.

3. Else if, for some i, w(e;) > k/2, then replace the Steiner tree edges incident
on the vertices in ¢; with edges of a minimal cost tree 7 spanning only the
vertices in ¢; N D. Add a new edge connecting r to the closest vertex in 7.

4. Else if >~ w(e;) < k/2, which means w(v) > k/2, then replace v with a
dummy vertex. In the final solution, add v and an edge connecting v to r.

5. Else collect a subset s of subtrees, each of which is rooted at one of v’s
children, such that k/2 < w(s) < k. Replace the Steiner tree edges incident
on the vertices in s with edges of a minimal cost tree 7 spanning only the
vertices in s N D. Add a new edge connecting r to the closest vertex in .

6. Go to step 1.

It can be verified that our algorithm outputs a feasible CMStT for a given £.

Theorem 1. For a given CMStT instance, Algorithm CMStT-NoNUNIFORM
guarantees an approrimation ratio of (ypst + 2).

Proof. We show that the cost of the tree output by Algorithm CMStT-NoNUNIF-
ORM is at most ypst + 2 times the cost of an optimal CMStT. The input to the
algorithm is a pgr-approximate Steiner tree 7'

It can be easily verified from the algorithm that all the new edges added to
the original tree T are either new spokes, or edges that interconnect vertices
within the subtrees for which the new spokes were added. In what follows, we
account for the cost of the new spokes added to T', followed by the cost of other
edges in the final solution output by the algorithm.

A new spoke, incident on a subtree, is added to the original Steiner tree if
and only if the weight of the subtree it connects is at least k/2. Notice that the
algorithm outputs a tree with each subtree hanging off r being disjoint and the
weight of every such subtree, for which a new spoke was added, is at least k/2. Let
Csp be the cost of the spokes that the algorithm “adds” to the Steiner tree. Note
that C,, does not include the cost of the spokes that are already in the Steiner
tree that was given as input to the algorithm. By Lemma 2, C;p < 2 x Cops.



Now, we account for the cost of other edges in the final solution. These edges
are either the Steiner tree edges or the edges that replaced the Steiner tree edges.
We show that the total cost of all these edges together is at most v times the
cost of the initial Steiner tree. To prove this, it suffices to prove that the cost
of the edges that replace the Steiner tree edges is at most v times the cost of
the Steiner tree edges that it replaces. For every subtree formed, notice that the
algorithm replaced the edges of the Steiner tree spanning the vertices in that
subtree by the edges of an MST spanning only the non-zero weight vertices in
that subtree. Since v was defined to be the inverse Steiner ratio (ratio of the cost
of an MST versus the cost of an optimal Steiner tree), by Steiner ratio argument,
the cost of the MST spanning only the non-zero weight vertices in a subtree is at
most v times the cost of an optimal Steiner tree spanning the non-zero weight
vertices in that subtree. Thus, we can conclude that the cost of the new edges is
at most v times the cost of the pgr-approximate Steiner tree edges it replaces.
The final cost of the tree output by the algorithm is given by

Capp S Csp + vpsT CST S QCopt + ')/PSTCopt S (’YPST + Q)Copt~

Corollary 1. For the CMStT problem with uniform vertexr weights, Algorithm
CMStT-NoNUNIFORM with little modification guarantees a (pst +2)-approzima-
tion ratio.

Proof. Since we are dealing with uniform vertex weights, without loss of gen-
erality, we can assume that they are of unit weight, and thus we can eliminate
Step. 4 from Algorithm CMStT-NoNUNIFORM. Therefore no dummy vertices
are introduced by the algorithm. Once a subtree ¢ of size at least k/2 is found,
instead of replacing the Steiner tree spanning the vertices in ¢ with a MST span-
ning the non-zero weight vertices in ¢, we can just use the edges in ¢, minus the
edge that connects ¢ to its parent, as they are. This eliminates the v from the
final ratio.

Corollary 2. For the CMST problem, Algorithm CMStT-NoNUNIFORM guar-
antees a (v + 2)-approzimation ratio. In particular, for points in Fuclidean and
rectilinear planes, it guarantees a ratio of 3.1548 and 3.5, respectively.

3.2 Uniform vertex weights

Although our algorithm for uniform vertex weights case 1s similar to Algorithm
CMStT-NoNUNIFORM at the top-level, contrary to expectations, there are some
complicated issues that have to be handled in order to obtain an approximation
ratio strictly less than pgr + 2. From our analysis for the non-uniform vertex
weights case, we can see that the weight of the minimum weight subtree hanging
off r plays a crucial role in the calculation of the approximation ratio. An obvious
heuristic is to prune subtrees of weight as close as possible to k, so that the ratio
drops considerably. We will soon see why pruning subtrees of weight strictly
greater than k/2 is more difficult than pruning subtrees of weight greater than
or equal to k/2. To overcome the difficulty of pruning subtrees of size strictly
greater than k/2, we introduce the concept of X-trees, which we define below.
We call a subtree, T, rooted at vertex v as an X-tree, z, if all of the following
properties are satisfied (follow Fig. 1).



k<w(T,) < k.

Weight of no subtree hanging off v is between %k and k.

Sum of the weights of no two subtrees hanging off v is between %k and k.
— Sum of the weights of no three subtrees hanging off v is between %k and k.

The following proposition follows from the definition of an X-tree.

Proposition 1. Let v be a mazimum level vertex in an X-tree rooted at v such
that Ty, is also an X-tree (v1 could be v itself ). If there is no subtree (non-X-tree)
of weight greater than k rooted at one of vi’s children, then there always exist
two subtrees, to and tg, hanging off vi such that k < w(ty) + w(ts) < 3k and
Tk < w(ts),w(ts) < 2k.

Since the vertices are of uniform weight, without loss of generality, we can
assume that they are of unit weight, and scale k& accordingly. We also assume
that a pgr-approximate Steiner tree is given as part of the input. Note that we
are trying to solves instances in L, metric plane. Even though, the maximum
nodal degree in a Steiner tree on a plane is 3, we will continue as if 1t is 5. This is
to ensure that our algorithm solves CMST instances on a plane, as the maximum
degree of an MST on a L, plane is 5 [7,9]. Note that every vertex but root in
a tree, with vertex degrees at most 5, has at most 4 children. The algorithm
given below finds a feasible CMStT for instances defined on a L, plane. In the
algorithm, we use ¢; to denote the subtree rooted at child ¢ of vertex v, and z;
to denote the X-tree rooted at child j of vertex v.

Algorithm CMStT-UNIFORM
Input: psp-approximate Steiner tree T rooted at r

1. Choose a maximum level vertex v # r such that 7, is a non-X-tree with
w(Ty) > k. If there exists no such vertex then go to step 11.

2. If w(Ty) = k, then add a new edge connecting r to the closest node in T,,.
Remove edge vp, from T

3. Else if, for some i, 2k/3 < w(c;) < k, then add a new edge connecting r to
the closest node in ¢;. Remove the edge connecting v to ¢; from T'.

4. Else if, for some 7 and j (i # j), 2k/3 < w(¢;) + w(c;) < k, then replace
edges ve; and ve; by a minimal cost edge connecting ¢; and ¢;, merging the
two subtrees into a single tree s. Add a new edge to connect r to the closest
node in s.

5. Else if, for some 4,j and z (i # j # z), 2k/3 < w(e;) + w(c;) + w(e:) < k,
then replace the Steiner tree edges incident on the vertices in ¢;, ¢; and c;
by a minimal cost tree s spanning all the vertices in ¢;, ¢; and c,. Add a new
edge to connect r to the closest node in s.

6. Else if, for some ¢,j and z (i # j # z), 4k/3 < w(e;) + w(c;) + w(es) < 2k,
then do the following.

Let E; be the set of edges incident on vertices in ¢;. We define E; (E,)
with respect to ¢; (¢, resp.) analogously. Without loss of generality, let E;
be the low-cost edge set among E;, F; and E,. Use DFS on c; to partition
the vertices in c¢; into two sets g; and gs such that the total weight of
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vertices in (¢; U g1) N D is almost the same as the total weight of vertices in
(cz Uga) N D. Remove all the edges incident on the vertices in subtrees ¢;, ¢;
and ¢,. Construct a minimal cost spanning tree s; comprising the vertices
in ¢; and g;. Similarly, construct a minimal cost spanning tree s; comprising
the vertices in ¢, and gs. Add new edges to connect r to the closest nodes
n s; and ss.

. Else if, for some i and j (i # j), 2k < w(z;)+w(z;) < 8k/3, do the following.

Let v; and v be two maximum level vertices in X-trees x; and x; respectively,
such that T,, and T, are X-trees themselves (see Fig. 2). Recall, by Propo-
sition 1, that there exist two subtrees to, and tg, (fa, and ¢g,), hanging off
v1 (v resp.) such that k < w(ta,)+w(ts,) < 3k (k < w(ta,) +w(ts,) < 2k
resp.).

Let Fy represent the set of edges incident on vertices in t,, (see Fig. 3).

Let FE represent the set of edges incident on vertices in t5,. We define Fj

(Es) with respect to t,, (¢, resp.) analogously. Let E3 be the set of edges

incident on vertices in z; and x; minus the edges in Fq, E2, E4 and Es.

Let Gy = {F1, Es}, Gy = {E3}, and G5 = {E4, E5} be three groups. Out of

{E\1, B3, Es, E4, E5}, double two low-cost edge sets such that they belong to

different groups.

(a) If E; and E; were the two edges sets that were doubled, with E; in
G and FE; in G3, then form three minimal cost subtrees si,s2 and s3
spanning the vertices in z; and z; as follows. Without loss of generality,
let F5 and F4 be the two low-cost edge sets that were doubled (Fig. 4).
Use shortcutting to form s; spanning all vertices in ¢,, and a subset
of vertices in tg,, form sz spanning all vertices in fg, and a subset of
vertices in {,,, and form ss with all the left-over vertices. Remove edge
vpy. Since k < w(ta,) +w(ts,) < 4k/3, k < w(ta,) +w(ts,) < 4k/3, and
2k < w(z;) + w(z;) < 8k/3, we can form s1,s2 and sz of almost equal
weight with 2k/3 < w(s1), w(s2), w(ss) < k.

(b) If E; and E; were the two edges sets that were doubled, with E; in G4
or Gz, and Ej; in G2, then form three minimal cost subtrees s;, s and s3
spanning the vertices in z; and z; as follows. Without loss of generality,
let E5 and E3 be the two low-cost edge sets that were doubled (see Fig. 5).
Fromt,, and ¢4, find a vertex w such that |wr| is minimum. Without loss
of generality, let t,, contain w. Use shortcutting to form s3 spanning all
the vertices in #; minus the vertices in tg, (see Fig. 6). Note that k/3 <
w(ss) < k, as z; and T, are X-trees and k/3 < w(ta,), w(ts,) < 2k/3.
Also, since k/3 < w(tg,) < 2k/3 and k < w(z;) < 4k/3, subtrees s;
and sy together will be of weight at least 4k/3 and at most 2k (see
Fig. 6). Form subtrees s; and sg, using the ideas in Step. 6, such that
2k/3 < w(s1),w(s2) <k and 4k/3 < w(s2) + w(sz) < 2k.

(c) Add new edges to connect r to the closest nodes in s1,s3 and ss.

Else if, for some ¢ and j (i # j), 4k/3 < w(z;)+w(c;) < 2k, do the following.

Let v1 be a maximum level vertex in X-tree z; such that 7,, is an X-tree

itself. Recall, by Proposition 1, that there exist two subtrees t,, and tg,,

hanging off vy such that k < w(ta,) + w(ts,) < 2k.



Let F represent the set of edges incident on vertices in 1,,. Let Fy represent
the set of edges incident on vertices in g, . Let E3 be the set of edges incident
on vertices in z; and ¢; minus the edges in £; and F5. Form subtrees s; and
s2 using the ideas in Step. 6. Add new edges to connect r to the closest nodes
n s; and ss.

9. Else if, 4k/3 < w(T,) < 2k, do the following. Let v; be a maximum level
vertex in X-tree z; such that T, is an X-tree itself. Recall, by Proposition 1,
that there exist two subtrees t,, and ?g,, hanging off v; such that k <
w(tal) + w(tﬁl) < %k
Let 4 represent the set of edges incident on vertices in 1,,. Let Fy represent
the set of edges incident on vertices in g, . Let E3 be the set of edges incident
on vertices in 7, minus the edges in F; and E5. Form subtrees s; and ss
using the ideas in Step. 6. Add new edges to connect r to the closest nodes
n s; and ss.

10. Go to step 1.

11. While there is an X-tree, z, hanging off r, pick a maximum level vertex v,
in z such that T;, is also an X-tree. Out of the two subtrees, ¢, and g,
hanging off v; (by Proposition 1), without loss of generality, let ¢, be the
subtree that is closer to r. Remove the edge connecting ¢, to v1, and add a
new edge to connect r to the closest node in %,,.

Theorem 2. For a given CMStT instance on a L, plane, Algorithm CMStT-
UNIFORM guarantees an approrimation ratio of (gPST + %)

Proof. We show that the cost of the tree output by Algorithm CMStT-UNIFORM
is at most (gpST + %) times the cost of an optimal CMStT. The input to the
algorithm is a pgr-approximate Steiner tree T' with maximum nodal degree at
most 5.

The algorithm “adds” a new spoke to the tree whenever it prunes a subtree
of weight at least 2k/3. There are certain situations (Steps 6 and 11) where
the algorithm adds a spoke for pruned subtrees of weight less than 2k/3. We
continue our analysis as if all of the pruned subtrees are of weight at least 2k/3.
This supposition makes the analysis of spoke cost simpler. We will soon justify
this supposition (in Cases 5 and 8) in a manner that it does not affect the overall
analysis in any way.

The cost of the spokes that were added to the initial Steiner tree is given
by Csp < % x Copt by an argument analogous to that proving the cost of the
spokes that the algorithm adds to the initial Steiner tree in Theorem 1. The
above inequality follows immediately from the fact that a new spoke is added to
the tree if and only if the subtree it connects to r is of weight at least 2k/3.

Now, we account for the cost of other edges—all the edges in the final solution,
except for the spokes added by the algorithm—in the final solution. We show
that the cost of these edges is at most 7/5 times the cost of the Steiner tree
edges that the algorithm started with. To prove this, it suffices to show that the
cost of the edges that replace the Steiner tree edges is at most 7/5 times the
cost of the edges that are replaced. In what follows, we show this by presenting a
case-by-case analysis depending upon which step of the algorithm was executed.



Case 1. Steps 1, 2, 3 and 10 do not add any non-spoke edges. The weight of
the subtrees for which Steps 1 and 2 adds spokes to the tree is at least 2k/3.

Case 2. The minimal cost edge connecting ¢; and ¢; in Step 4 is at most
the sum of the two Steiner tree edges that connects ¢; and ¢; to v (by triangle
inequality). Hence no additional cost is involved.

Case 3. In Step 5, the cost of the tree s spanning all the vertices in ¢;, ¢; and
¢, 1s at most the cost of the tree obtained by doubling the minimum cost edge
out of the 3 Steiner tree edges that connect the 3 subtrees to v (see Fig. 7(a)).
Hence, we can conclude that the cost of the tree constructed in Step 5 is at most
4/3 times the cost of the Steiner tree edges it replaces.

Case 4. In Step 6, the total cost of the trees s; and s; spanning all the
vertices in ¢;, ¢; and ¢, is at most the total cost of the trees £; and 5 obtained
by doubling the minimum cost edge set out of the 3 edge sets that are incident on
the vertices in ¢;, ¢; and ¢;, respectively (see Fig. 7(b)). Hence, we can conclude
that the cost of the tree constructed in Step 6 is at most 4/3 times the cost of
the Steiner tree edges it replaces.

Case 5. Step 7 forms three subtrees s;, s, and sz from X-trees z; and z;.
Since s1, s2 and s3 can be formed by doubling two low-cost edge sets (belonging
to two different groups) out of the 5 possible edge sets and shortcutting, we can
conclude that the cost of the subtrees s1,ss and s3 constructed in Step 7 is at
most 7/5 times the cost of the Steiner tree edges it replaces.

Accounting for the cost of the spokes added to the Steiner tree requires that
each subtree pruned from the Steiner tree is of weight at least 2k/3. We already
proved that the cost of the spokes added to the Steiner tree is at most 3/2 times
the cost of an optimal solution. Without loss of generality, the requirement that
each pruned subtree is of weight at least 2k/3 can be interpreted as that of
“charging” the spoke cost incident on a subtree to at least 2k/3 vertices. Notice
that this interpretation is valid only if the spoke connecting the subtree to the
root is of minimal cost (7 is connected to the closest node in the subtree).

Step 7(a) of the algorithm constructs three subtrees s1, s and ss, each con-
taining at least 2k/3 vertices. This ensures that there are at least 2k/3 vertices
to which each of these subtrees can charge their spoke cost. This is not the case
with Step 7(b) of the algorithm. As can be seen, subtree s3 might be of weight
less than 2k/3. Since s3 contains at least 2k /3 vertices and w(sq)+w(s3) > 4k/3,
and w is a vertex in z; such that |wv| is minimum, we can always charge the
spoke costs of sy and s3 to at least 4k/3 vertices. Hence, our initial assumption
that every pruned subtree is of weight at least 2k/3 does not affect the analysis
since there are at least 2k/3 vertices for every spoke to charge.

Case 6. Analysis for Steps 8 and 9 are similar to that for Step 6 (Case 4).

Case 8. Step 11 prunes one subtree off X-tree z. The cost of the spoke |rw|
to connect ¢, to r can be charged to all the vertices in the X-tree z as per the
following argument. After disconnecting ¢, from the X-tree, we are left with a
subtree of w(z) — w(ty) < k vertices. We do not need a new spoke for the left-
over subtree as it is already connected to r using the Steiner tree edge. Hence,
even for this case, our initial assumption that every pruned subtree is of weight



at least 2k/3 does not affect the analysis since there are at least %k vertices to
charge for the spoke added.

In all of the above cases, the cost of the edges that replace the Steiner tree
edges is at most 7/5 times the cost of the Steiner tree edges that the algorithm
started with. Thus, the total cost of the tree output by the algorithm is

7 3 7 3
Capp S gpSTCST + 5 Copt S (EPST + E)Copr
Corollary 3. For the CMST problem in L, plane with uniform vertexr weights,
Algorithm CMStT-UNIFORM guarantees a 2.9-approximation ratio.

4 Conclusion

Our ratios are, certainly, not tight. We believe that there is room for improve-
ment, at least for the CMST problem with uniform vertex weights, for which we
obtain a ratio of 2.9. The cost of an optimal CMST can be lower bounded by
one of the following two quantities: (i) the MST cost and (ii) the spoke lower
bound (Lemma 1). Consider Fig. 8, which contains a?k points in a unit-spaced
grid. MST cost of the points in the grid alone is a?k — 1. Let k be the distance
between r and the closest node in the grid. For capacity constraint &, the cost
of an optimal solution would be 2a%k — a?, whereas the MST cost would be
(a? 4+ 1)k — 1 and the spoke lower bound would be a?k. This shows that with
the current lower bounds, one cannot get a ratio any better than 2. It should
be interesting to see whether we can find a unified lower bound by combining
the MST cost and the spoke cost in a some way, instead of just analyzing them
separately. We do not see a reason why our of ratio of 2.9 cannot be improved
to 2.
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Fig.1. An X-tree with k = 100.
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Fig. 4. Fig. 8. A tight example.



