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Abstract

We are given an undirected graph= (V, E) with positive weights on its vertices representing demands, and non-negative
costs on its edges. Also given are a capacity constkaiahd root vertex € V. In this paper, we consider tteapacitated
minimum spanning netwollMSN) problem, which asks for a minimum cost spanning network such that the remavahdf
its incident edges breaks the network into a number of components (groups), each of which is 2-edge-connected with a total
weight of at mosk. We show that th€MSN problem isNP-hard, and present a 4-approximation algorithm for graphs satisfying
triangle inequality. We also show how to obtain similar apg@mation results for a retad 2-vertex-connectedvSN problem.
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1. Introduction problem is feasible only wheh is at least as much
as the largest vertex weight. TI&MST problem is
NP-hard [13]. In telecommunication network design,
the CMST problem corresponds to the designing of a
minimum cost tree network by installing cables along
the edges of a network. The cables have a prespecified
capacity constraint on the amount of traffic they can
transmit, and can be bought at a certain cost per
unit length. Each node, but the root node, in the
network has traffic associated with it, which must
be routed to the root node. The goal is to construct
a minimum length tree network so as to facilitate
simultaneous routing of traffic from all the nodes to
msponding author. the root node. . L.
E-mail addressesaja@utdallas.edu (R. Jothi), TheCMST problem has been extensively studied in
rbk@utdallas.edu (B. Raghavachari). computer science and operations research for the past

Consider a given undirected grapgh = (V, E)

with non-negative weights on its vertices representing
demands, and non-negative costs on its edges. Also
given as input are a capacity constraikntand root
vertex r € V. The extensively studiedapacitated
minimum spanning tre¢CMST) problem [4,10,17]
asks for a minimum cost spanning tree rooted at
which the sum of the vertex weights in every subtree
(local access network) hanging affs at most. The
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40 years [4,10,17]. One generalization of DRIST

problem that has receivedtantion recently is the
single-sink buy-at-bullproblem [14] (also known as
thesingle-sink edge installatioproblem) in which we
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into groups of weight at most, with the vertices in
each group along withr being 2-vertex-connected.
A feasible solution to thevC-CMSN problem ensures
that the network remains connected even after the

are given several cable types instead of just one. Eachremoval (failure) of a non-root vertex.

cable has a given capacity and a cost per unit length.
1.1. Problem definition

A CMST can be viewed as a collection of local

Neither of the above problems have been studied
before. But,CMST algorithms designed for graphs
satisfying triangle inequality can be altered to produce
feasible CMSN solutions. In particular, Altinkemer
and Gavish'€MST algorithm [3] can be used to find

access tree networks, each with a total demand of ata feasible solution that is within factor 6 of an optimal

most k, connected to the root node. Most often, lo-
cal access networks are prone to node/edge failures
To prevent such failures, the notion of survivable net-
works has been studied. Survivable networks are re-
silient to node/edge failures. That is, a node/edge fail-
ure still allows communication between functioning
sites. We call a network to be-vertex-connected, if
the failure ofa — 1 vertices leaves the remaining net-
work connectedd-edge-connectivity is defined with
respect to edge failures analogously). 2-Connectivity
is a major feature in today’s fast and reliable commu-
nication networks, since without 2-connectivity, a sin-
gle vertex/edge failure could cause intolerable losses.
In this paper, we consider thmapacitated minimum
spanning networKCMSN) problem, a variant of the
CMST problem, which requires that each of the local

solution. The idea is to double the edges of the local

.access tree networks to construct tours. For2we-

CMSN problem, Altinkemer and Gavish’s algorithm
for the delivery problem [2] will guarantee a feasible
solution that is within factor 4 of an optimal solution.

1.2. Ourresults

We show that th€MSN and2VC-CMSN problems
are NP-hard using a reduction from the minimum
cost 2-connected spanning subgraph problem. For
the CMSN problem, we present a 4-approximation
algorithm for graphs satisfying triangle inequality. For
the 2VC-CMSN problem, we show that there is an
algorithm with a performance ratio of 3.5. We also
show that theVvC-CMSN problem is polynomial-time

access networks be 2-edge-connected. In other words solvable if all vertices have unit weights ake-= 2.

the CMSN problem requires that the local access net-
works be resilient under an edge failure. The formal
definition of the problem is given below.

CMSN: Consider an undirected grajgh= (V, E),
root r € V, and capacityk. Each vertexw € V is
associated with a positive numbey, representing
the demand that wishes to route ta, and each

1.3. Related work

Most minimum spanning treeMST) algorithms
can be modified to find a feasible solution to ¢ST
problem. Several exact algorithms and mathematical
formulations are available for theMST problem [4,

17]. The instance sizes that can be solved by these

edge has a cost associated with it. The capacitatedalgorithms to optimality, in reasonable amount of time,

minimum spanning network problem asks for a
minimum cost spanning network such that the
removal of r and its incident edges breaks the
network into a number of components (groups),
each of which is 2-edge-connected with a total
weight of at mosk.

We also consider a variant of tt@MSN problem,
which we call the 2-vertex-connect€MSN problem
(2VC-CMSN). The 2VC-CMSN problem asks for a
minimum cost partitioning of the set of vertic¥s {r}

is still far from the size of the real-life instances.
Numerous heuristics for theMST problem have been
proposed during the past 40 years. Some of the best
heuristics, in terms of the quality of solutions obtained,
are due to Amberg et al. [4], Ahuja et al. [1], and
Sharaiha et al. [15]. Despite the quality of the solutions
produced, their worst-case time complexity is high
and their running time could be exponential [12,16].
These heuristics start with an initial feasible solution,
and improve the initial solution by local re-alignments
of nodes during every iteration. The problem with
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these techniques is that the amount of improvement be converted to an equivalent problem with integer
in each iteration could be so small that the number of vertex weights. The optimal solution for the scaled
iterations could possibly be as large as the maximum problem is identical to that of the original problem [3].

possible objective value [16]. The best heuristic, both
in terms of the quality of the solutions obtained and
the worst-case running time (@ logn)), is due to
Jothi and Raghavachari [9], who recently improved
Esau-Williams’ heuristic [6]. For a complete survey
on heuristics for theCMST problem, we refer the
reader to [4,10,17].

The first algorithm for th&€MST problem with any
approximation guarantee was given by Gavish and Al-
tinkemer [8]. They later presented improved approx-
imation algorithms with ratios 3- 2/k and 4 for the
uniform and non-uniform vertex-weighted graphs [3].
In a recent work, Jothi and Raghavachari [10] pre-
sented improved approximation algorithms for the
CMST problem. Their algorithms guarantee ratios
of 2.9 for uniform vertex-weighted graphs Irj, met-
ric plane, ands + 2 for non-uniform vertex-weighted
graphs, wherg is the inverséteiner ratio! All of the

3. The CMSN problem
3.1. Problem complexity

Given an edge weighted graph with the cost of
an edge being its weight, the minimum cost 2-edge-
connected spanning subgra@ECSS) problem asks
for a minimum cost subgraph such that there ex-
ists at least two edge-disjoint paths between any two
nodes [11]. The 2-vertex-connected spanning sub-
graph @vCSS) problem is defined analogously with
respect to vertex-disjoint paths [11]. In what follows,
we show that the&MSN problem isNP-hard using a
simple reduction from theECSS problem.

above ratios hold only for graphs whose edges satisty Theorem 3.1. The capacitated minimum spanning

triangle inequality.

2. Preliminaries

network problem i&NP-hard.

Proof. To prove that theCMSN problem isNP-hard,
we show that th@ECSS problem is polynomial-time

In this paper, we consider graphs whose edges réducible to the&€MSN problem. LetG = (V, E) be an
obey triangle inequality. Hence, we assume that there inStance of2ECSS problem. The sum of costs of all

always exists an edge between any two vertices. Eventne edges irG is given byA =3, ;cy |ij|. Letn =
though the input is a vertex-weighted graph, we safely |V|. Construct an instanc&’ = (V', E’) of CMSN

assume that the root vertexhas weight zero as the
cost of theCMSN is not dependent uporis weight.

problem, whereV’ =V U {r} andE’ = E U {(i,r) |
i € V}, and set the cost of each edge incident-dn

Let |uv| denote the cost of the edge between vertices be A 4 1. Also, setk to ben.

u andv. Let OPT denote an optimaCMSN and let
Copt denote its cost. LeT, denote the subtree rooted
atv in a given treel rooted atr. Let w, denote the
weight of vertexv and letw(T,) denote the sum of the
weights of vertices iff,,. We call asspokesthe edges
incident onr in a CMSN. By level of a vertex, in a
treeT rooted at vertex, we mean the number of tree
edges on its path to.

We now show that grap&f has a 2-edge-connected
spanning subgraph of cost at mast if and only
if graph G’ has aCMSN of cost at mostC + A +
1. Suppose tha6; has a 2-edge-connected spanning
subgrapls of cost at most. One can easily construct
a feasibleCMSN in G’ using S by just adding an
edge fromr to one of the other nodes. The cost of
the resultingCMSN would be at mosC + A + 1 by

We can safely assume that all the vertices have definition. Conversely, suppose that gra@gh has a
integer weights. The assumption is not restrictive as CMSN S* of cost at mostC + A + 1. Removing edges

any CMSN problem with rational vertex weights can

1 The Steiner ratio is the maximum ratio of the costs of the
minimum cost Steiner tree versus the minimum cost spanning tree.

incident onr from $* will result in a feasible 2-edge-
connected spanning subgraph @r Such a solution
would be of cost at most, since we will be removing
at least one edge of coat+ 1 incidentorr. O
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Remark. Since 2ECSS problem is NP-hard even
for graphs satisfying triangle inequality, we conclude
that the CMSN problem on graphs whose edges
satisfy triangle inequality isNP-hard as well, as the
transformed graph in Theorem 3.2 still obeys triangle
inequality.

Theorem 3.2. The 2-vertex-connected capacitated
minimum spanning network problemN&-hard.

Proof. The proof is similar to that for Theorem 3.2
except that the reduction is from the Hamiltonian path
problem. O

3.2. Lower bounds

For theCMSN problem, we use two different lower
bounds on the cost of an optimal solution. The first
is the cost of the minimum spanning tree, which is
obvious. The second lower bound%szvev wy|rvl,
which is presented as Lemma 3.1.

Lemma 3.1. Consider a given graply = (V, E), root
r € V, and a capacity constraint. Let OPT be an
optimal CMSN for G, rooted atr, whose cost i€opt.
Then,

1
Copt 2 E Zwv|’"v|-

veV

Proof. Letr be the number of local access networks
connected t@ in OPT. Letg be one such local access
network inOPT that is connected to. Let S, be the
set of nodes iny. Let C, be the sum of the cost of
the local access network and the cost of the edge
connectingg to r. By triangle inequality,

ZUES wU|rv|
Cy = max{jrv]) > Se= T
ves, ZveSq Wy
ZveS wylrv| )
> "T smcez wy <k ).
VESy

For local access networks connected tm OPT,

Wy|rv|

t 2
Copt=»_Cy > ”Evk
g=1
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3.3. Algorithm and analysis

We first construct amST T, of the given graph
G = (V,E) and rootT at r. Next, we gather nodes
from T in groups such that the sum of vertex weights
in each group is betweédty2 andk. Finally, for each
group of vertices, we construct a tour (cycle) spanning
all vertices in that group, ahconnect the resulting tour
to r. For easier analysis, we introdudemmyvertices
with zero weight, in place of real vertices, during
the execution of the algorithm, which are removed
from the final solution using shortcutting. The formal
algorithm is given in Fig. 1.

It can be verified that the algorithm outputs a
feasibleCMSN for a givenk.

Theorem 3.3. Algorithm CAPMIN SPANET (Fig. 1) is
a 4-approximation algorithm for th€MSN problem.

Proof. We prove the theorem by showing that, for any
given instance, Algorithm €PMINSPANET outputs a
solution that has cost at most 4 times the cost of an
optimalCMSN.

Fig. 2 depicts the 3 situations (#1, #2, #3) encoun-
tered in the algorithm, where minimum cost tours are
constructed. Since the edges of the graph obey trian-
gle inequality, it can be seen that a tour—covering all
the vertices in the concerned set—can be constructed
by just doubling the necessamsT edges. Remember
that thedummyvertices, which serve only as place-
holders, are introduced to ensure that the underly-
ing MST edges are still available for doubling. The
dummy vertices are removed from the final solution
using shortcutting.

Except for those tours constructed in the last “for”
loop of the algorithm, every tour constructed by the
algorithm contains vertices whose weights add up to
at leastk/2. Thus, for every tour the algorithm adds a
new spoke, it is guaranteed that the sum of the vertex
weights in that tour is at leagt/2. Notice that every
spoke added td@ in this manner connects to the
closest vertex in the tour. Let, t2, ..., t, be the set
of tours constructed by Algorithm APMINSPANET
for which a new spoke was added. L€t be the
set of vertices in tours, ..., #,. Let#; be one such
tour. Let z; be the vertex ing that is connected
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Input: MST T, rooted at-, andk.
While there exists a vertex# r such thatw(7y) > k and level ofv is maximum, do
If w(Ty) =k,
Remove all the edges incident on verticegjn
Construct a minimum cost touvisiting all vertices inT;,. Il #1
Add edgerz (spoke) such that € t+ and|rz| = min, g {|rul}.
Elseif) ;cv's childrenw (Tv;) < k/2,
w(v) must be greater thaty2 asw(T,) > k.
Add edgerv (spoke), and sat as adummyvertex.
Else
Initialize: S =0
Sortv’s children, in non-decreasing order, based on the weight of the subtrees rooted at them.
Let{vy,v2,...,vp} be the sorted list ob’s children.
S=SU{x|lxeTy,}.
While w(S) < k/2, do
Choose an unprocessed childof v.
S=SU{x|xeTy}.
Remove all the edges incident on verticesin
Construct a minimum cost touvisiting all vertices inS. Il #2
Add edgerz (spoke) such that € t+ and|rz| = min, g {|rul}.
For every childv; of », which is not part of any tour
Remove all the edges iy, .
Construct a minimum cost touvisiting all vertices in7 ;. 11 #3
Removedummyvertices from the final solution using shortcutting of the tours.
Install cables along the edges of the network constructed thus far.

Fig. 1. Algorithm CAPM IN SPANET.

m
> ver Wolrvl
@ Cspokes=2|’”2i| L= ———

= k/2
Ty ij
@ <2x M (sincel’ C V)
A <2x Copt (byLemma3.1)

Since the cost of the local access networks is at
. . most twice the cost of théST, and the cost of the new
(=) (®) (<) spokes that were added is at most twice the optimal
Fig. 2. (a) Doubling the edges i, and shortcutting resultsinatour.  CMSN, we conclude that Algorithm &M INSPANET

(b) Doubling the edges incident on the verticesiand shortcutting outputs a solution of cost at most 4 times the cost of
results _in a tour. (c) Doubling the edges Tp; and shortcutting an optimalCMSN. 0O
results in a tour.

to r. Among the vertices im;, sincez; is the closest 4, The 2vC-CMSN problem
tor,

For a given graphG = (V, E), rootr € V, and
ZUE!,‘ wU|rv| .
— 2 a capacityk, the 2VC-CMSN problem asks for a

/ minimum cost partitioning of the set of vertic&s {r}

Thus, form tours for which the new spokes were into groups of weight at mosk, with the vertices in
added, each group along withr being 2-vertex-connected.

lrzi| <
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Notice that a feasible solution to th®&vC-CMSN

problem ensures that the network remains connected

even after the removal (failure) of a non-root vertex.
For the2vC-CMSN problem, we show that Altinkemer
and Gavish's algorithm for the delivery problem [2]
finds a feasible solution that is within a factor 3.5 of
an optimal solution.

4.1. Delivery problem

R. Jothi, B. Raghavachari / Information Processing Letters 91 (2004) 183-190

4.2. Improved approximation analysis

Notice that an optima&lVCSS cost is a lower bound
for the2vC-CMSN problem aVvC-CMSN problem is
a generalization of thevVCSS problem @VCSS prob-
lem is the2vC-CMSN problem withk = o0). Sup-
pose that Altinkemer and Gavish’s algorithm for the
delivery problem uses ChristofideBSP algorithm [5]
to construct the initial tour. In this approach, we start
with anMST T of the graph. A minimum weight per-
fect matching of the odd-degree nodesrofn an ar-

Given a set of customers (nodes), each having a bitrary graph is then computed and addedrtoThe

positive demand, a depot (root node)and vehicles

of capacityq, the delivery problem asks for routes
for the vehicles such thdhe vehicles depart from,
serve a set of customers following their designated
routes and return te. The objective is to minimize
the total length (cost) of the routes without violating
the capacity limiy and visiting each customer exactly
once. Altinkemer and Gavish [2] presented a traveling
salesman TSP) tour partitioning algorithm for this
problem, which finds a feasible solution of cost at
most 2+ ptsp times the cost of an optimal solution,
wherepTspis the best achievable approximation ratio
for the TSP problem. Their idea is to constructr&P
tour visiting all the customers, optimally partition the
tour into paths with the sum of customer demands
in each path being at mo&t and connect the two
ends of each path ta Using the fact that an optimal
TSP tour is a lower bound on an optimal solution
for the delivery problem, they were able to show
that the cost of the solution produced by such an
algorithm is at most 2 prsp times than that of an
optimal solution (showing that the cost to connect the
paths tos is at most 2 times the cost of an optimal
solution).

Notice that the solution returned by the delivery
algorithm for capacityy = k with depots =r is a
feasible solution for thevC-CMSN problem. Since
an optimalTSP tour is not a lower bound for th&v/C-
CMSN problem, their approximation ratio ofg ptsp
does not apply to thevC-CMSN problem. Rather,
one can interpret the cost of th&P tour, which they
partition, as 2 times the cost of M8T. Since theMST
cost is a lower bound for thevVC-CMSN problem,
Altinkemer and Gavish’s analysis will guarantee a
ratio of 4 for the2vC-CMSN problem.

resulting Eulerian graph can then be converted into a
TSP tour using shortcutting. Frederickson and JaJa [7]
showed that the matching found by Christofides’ algo-
rithm, (on its way to finding an approximal&pP tour)

is no more than half the cost of an optinRAICSS.

As MST cost is a lower bound for thevVCSS prob-
lem, the cost of the Christofide$SP tour is at most
1.5 times the cost of an optimal/CSSs [7]. Since an
optimal 2VCSS is a lower bound for thevC-CMSN
problem, Altinkemer and Gavish'’s algorithm actually
guarantees a ratio of 3.5 for tAgC-CMSN problem.

Theorem 4.1. Altinkemer and Gavish’s algorithm for
the delivery problem is &.5-approximation for the
2VC-CMSN problem.

4.3. Unit vertex weights with = 2

The special case when all vertices have unit weights
andk = 2 is polynomial time solvable using min-cost
matching. LetG = (V, E) be the given graph. Let
luv|c be the cost of the edge connecting vertiaes
andv in G. Letr be the root vertex irt;. Construct a
graphG’ = (V1 U Vi, E1 U E2 U E3) as follows:

e SetVi={v |veV}].

e Introduce an edge, int&E, of cost |xy|g +
lrx|g + |rylc between vertices’ andy’ in Vi,
if x'#£y'.

o SetVo={v"|veV]}.

e Introduce an edge, int&», of cost zero between
verticesx” andy” in Vyp, if x”" #£y".

e for eachv € V, introduce an edge of coftv|g,
into E3, between vertices’ andv” in G’ (v' and
v” correspond to the same vertex V).
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Lemma 4.1. The cost of a min-cost perfect matching
of the vertices inG’ is equal to the cost of an optimal
solution for the2vC-CMSN problem onG.

189

of an MST. Similarly one can construct an instance
whose optimalCMSN cost is at leasf2 (k) times the

cost of the spoke lower bound (Lemma 3.1). We be-
lieve that finding better lower bounds could help find

Proof. We use the notations used above to complete better algorithms. One other interesting open problem

the proof. It suffices to prove the following:

(1) Given a2vC-CMSN of costw in G, there exists a
perfect matching of cosb in G’.

If a local access network in the givewC-CMSN
contains 2 verticesx and y, then match the
correspondingc and y, belonging toVs, in G'.

If a local access network in the givewC-CMSN
contains just one vertex, then match’ € V1 and

x" € V,. By doing this, all vertices belonging to
V1 in G’ will be matched while there might be
some vertices irV» that are not matched. Since
all vertices inV7 are matched, an even number of
vertices inV2 will be left unmatched, and they can
be paired-up arbitrarily. Since the cost of matching
x € Vo andy € V> is zero, the cost of the perfect
matching would be the same as the cost of the
2VC-CMSN.

Given a matching of cosb in G, there exists a
2VC-CMSN of costw in G.

Let n = |V|. Thus,|V’| = 2n. Let (x, y) denote

a matching between verticesand y. If x,y €
Vi1, connect the corresponding two verticesGn
with r to form a cycle. Ifx € V1 andy € Va,
connect the corresponding vertex (batrand y
will correspond to the same vertexi) tor. O

)

Theorem 4.2. The 2VvC-CMSN problem with unit
vertex weights anél = 2 is polynomial time solvable.

5. Open questions
Unlike the CMST problem, for which the approx-

imation ratio for uniform vertex-weighted graphs is
smaller than that for non-uniform vertex-weighted

graphs, our algorithm guarantees an approximation ra-

tio of 4 for all graphs. Are there better approximations
for the CMSN problem in uniform vertex-weighted

graphs? Also, are there better approximations for geo-
metric graphs? The lower bounds that we used are
weak as one can easily construct an instance whose

optimal CMSN cost is at leasf2 (n/k) times the cost

would be to approximat€MSNs for general graphs
(whose edges may not satisfy triangle inequality). We
do not know at this time how to obtain a non-trivial
approximation ratio for general graphs.
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