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Abstract

We are given an undirected graphG = (V ,E) with positive weights on its vertices representing demands, and non-neg
costs on its edges. Also given are a capacity constraintk, and root vertexr ∈ V . In this paper, we consider thecapacitated
minimum spanning network(CMSN) problem, which asks for a minimum cost spanning network such that the removal ofr and
its incident edges breaks the network into a number of components (groups), each of which is 2-edge-connected w
weight of at mostk. We show that theCMSN problem isNP-hard, and present a 4-approximation algorithm for graphs satisf
triangle inequality. We also show how to obtain similar approximation results for a related 2-vertex-connectedCMSN problem.
 2004 Elsevier B.V. All rights reserved.
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Consider a given undirected graphG = (V ,E)

with non-negative weights on its vertices represen
demands, and non-negative costs on its edges.
given as input are a capacity constraintk, and root
vertex r ∈ V . The extensively studiedcapacitated
minimum spanning tree(CMST) problem [4,10,17]
asks for a minimum cost spanning tree rooted atr in
which the sum of the vertex weights in every subt
(local access network) hanging offr is at mostk. The
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NP-hard [13]. In telecommunication network desig
the CMST problem corresponds to the designing o
minimum cost tree network by installing cables alo
the edges of a network. The cables have a prespec
capacity constraint on the amount of traffic they c
transmit, and can be bought at a certain cost
unit length. Each node, but the root node, in
network has traffic associated with it, which mu
be routed to the root node. The goal is to constr
a minimum length tree network so as to facilita
simultaneous routing of traffic from all the nodes
the root node.

TheCMST problem has been extensively studied
computer science and operations research for the

.
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40 years [4,10,17]. One generalization of theCMST
problem that has received attention recently is the
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into groups of weight at mostk, with the vertices in
each group along withr being 2-vertex-connected.
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single-sink buy-at-bulkproblem [14] (also known a
thesingle-sink edge installationproblem) in which we
are given several cable types instead of just one. E
cable has a given capacity and a cost per unit leng

1.1. Problem definition

A CMST can be viewed as a collection of loc
access tree networks, each with a total demand o
most k, connected to the root node. Most often,
cal access networks are prone to node/edge failu
To prevent such failures, the notion of survivable n
works has been studied. Survivable networks are
silient to node/edge failures. That is, a node/edge
ure still allows communication between functioni
sites. We call a network to beα-vertex-connected, i
the failure ofα − 1 vertices leaves the remaining ne
work connected (α-edge-connectivity is defined wit
respect to edge failures analogously). 2-Connecti
is a major feature in today’s fast and reliable comm
nication networks, since without 2-connectivity, a s
gle vertex/edge failure could cause intolerable los
In this paper, we consider thecapacitated minimum
spanning network(CMSN) problem, a variant of the
CMST problem, which requires that each of the loc
access networks be 2-edge-connected. In other wo
the CMSN problem requires that the local access n
works be resilient under an edge failure. The form
definition of the problem is given below.

CMSN: Consider an undirected graphG = (V ,E),
root r ∈ V , and capacityk. Each vertexv ∈ V is
associated with a positive numberwv representing
the demand thatv wishes to route tor, and each
edge has a cost associated with it. The capacit
minimum spanning network problem asks for
minimum cost spanning network such that t
removal of r and its incident edges breaks t
network into a number of components (group
each of which is 2-edge-connected with a to
weight of at mostk.

We also consider a variant of theCMSN problem,
which we call the 2-vertex-connectedCMSN problem
(2VC-CMSN). The 2VC-CMSN problem asks for a
minimum cost partitioning of the set of verticesV \{r}
.

,

A feasible solution to the2VC-CMSN problem ensure
that the network remains connected even after
removal (failure) of a non-root vertex.

Neither of the above problems have been stud
before. But,CMST algorithms designed for graph
satisfying triangle inequality can be altered to produ
feasible CMSN solutions. In particular, Altinkeme
and Gavish’sCMST algorithm [3] can be used to fin
a feasible solution that is within factor 6 of an optim
solution. The idea is to double the edges of the lo
access tree networks to construct tours. For the2VC-
CMSN problem, Altinkemer and Gavish’s algorith
for the delivery problem [2] will guarantee a feasib
solution that is within factor 4 of an optimal solution

1.2. Our results

We show that theCMSN and2VC-CMSN problems
are NP-hard using a reduction from the minimu
cost 2-connected spanning subgraph problem.
the CMSN problem, we present a 4-approximati
algorithm for graphs satisfying triangle inequality. F
the 2VC-CMSN problem, we show that there is a
algorithm with a performance ratio of 3.5. We al
show that the2VC-CMSN problem is polynomial-time
solvable if all vertices have unit weights andk = 2.

1.3. Related work

Most minimum spanning tree (MST) algorithms
can be modified to find a feasible solution to theCMST
problem. Several exact algorithms and mathema
formulations are available for theCMST problem [4,
17]. The instance sizes that can be solved by th
algorithms to optimality, in reasonable amount of tim
is still far from the size of the real-life instance
Numerous heuristics for theCMST problem have bee
proposed during the past 40 years. Some of the
heuristics, in terms of the quality of solutions obtain
are due to Amberg et al. [4], Ahuja et al. [1], an
Sharaiha et al. [15]. Despite the quality of the solutio
produced, their worst-case time complexity is h
and their running time could be exponential [12,1
These heuristics start with an initial feasible soluti
and improve the initial solution by local re-alignmen
of nodes during every iteration. The problem w
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these techniques is that the amount of improvement
in each iteration could be so small that the number of
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be converted to an equivalent problem with integer
vertex weights. The optimal solution for the scaled
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iterations could possibly be as large as the maxim
possible objective value [16]. The best heuristic, b
in terms of the quality of the solutions obtained a
the worst-case running time (O(n2 logn)), is due to
Jothi and Raghavachari [9], who recently improv
Esau–Williams’ heuristic [6]. For a complete surv
on heuristics for theCMST problem, we refer the
reader to [4,10,17].

The first algorithm for theCMST problem with any
approximation guarantee was given by Gavish and
tinkemer [8]. They later presented improved appr
imation algorithms with ratios 3− 2/k and 4 for the
uniform and non-uniform vertex-weighted graphs [
In a recent work, Jothi and Raghavachari [10] p
sented improved approximation algorithms for t
CMST problem. Their algorithms guarantee rati
of 2.9 for uniform vertex-weighted graphs inLp met-
ric plane, andγ + 2 for non-uniform vertex-weighte
graphs, whereγ is the inverseSteiner ratio.1 All of the
above ratios hold only for graphs whose edges sa
triangle inequality.

2. Preliminaries

In this paper, we consider graphs whose ed
obey triangle inequality. Hence, we assume that th
always exists an edge between any two vertices. E
though the input is a vertex-weighted graph, we sa
assume that the root vertexr has weight zero as th
cost of theCMSN is not dependent uponr ’s weight.
Let |uv| denote the cost of the edge between verti
u andv. Let OPT denote an optimalCMSN and let
Copt denote its cost. LetTv denote the subtree roote
at v in a given treeT rooted atr. Let wv denote the
weight of vertexv and letw(Tv) denote the sum of th
weights of vertices inTv . We call asspokes, the edges
incident onr in a CMSN. By level of a vertex, in a
treeT rooted at vertexr, we mean the number of tre
edges on its path tor.

We can safely assume that all the vertices h
integer weights. The assumption is not restrictive
any CMSN problem with rational vertex weights ca

1 The Steiner ratio is the maximum ratio of the costs of
minimum cost Steiner tree versus the minimum cost spanning t
problem is identical to that of the original problem [3

3. The CMSN problem

3.1. Problem complexity

Given an edge weighted graph with the cost
an edge being its weight, the minimum cost 2-ed
connected spanning subgraph (2ECSS) problem asks
for a minimum cost subgraph such that there
ists at least two edge-disjoint paths between any
nodes [11]. The 2-vertex-connected spanning s
graph (2VCSS) problem is defined analogously wi
respect to vertex-disjoint paths [11]. In what follow
we show that theCMSN problem isNP-hard using a
simple reduction from the2ECSS problem.

Theorem 3.1. The capacitated minimum spannin
network problem isNP-hard.

Proof. To prove that theCMSN problem isNP-hard,
we show that the2ECSS problem is polynomial-time
reducible to theCMSN problem. LetG = (V ,E) be an
instance of2ECSS problem. The sum of costs of a
the edges inG is given by∆ = ∑

i,j∈V |ij |. Let n =
|V |. Construct an instanceG′ = (V ′,E′) of CMSN
problem, whereV ′ = V ∪ {r} andE′ = E ∪ {(i, r) |
i ∈ V }, and set the cost of each edge incident onr to
be∆ + 1. Also, setk to ben.

We now show that graphG has a 2-edge-connecte
spanning subgraph of cost at mostC, if and only
if graph G′ has aCMSN of cost at mostC + ∆ +
1. Suppose thatG has a 2-edge-connected spann
subgraphS of cost at mostC. One can easily constru
a feasibleCMSN in G′ using S by just adding an
edge fromr to one of the other nodes. The cost
the resultingCMSN would be at mostC + ∆ + 1 by
definition. Conversely, suppose that graphG′ has a
CMSN S∗ of cost at mostC +∆+ 1. Removing edge
incident onr from S∗ will result in a feasible 2-edge
connected spanning subgraph forG. Such a solution
would be of cost at mostC, since we will be removing
at least one edge of cost∆ + 1 incident onr. �
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Remark. Since 2ECSS problem is NP-hard even
for graphs satisfying triangle inequality, we conclude
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3.3. Algorithm and analysis
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that the CMSN problem on graphs whose edg
satisfy triangle inequality isNP-hard as well, as the
transformed graph in Theorem 3.2 still obeys trian
inequality.

Theorem 3.2. The 2-vertex-connected capacitate
minimum spanning network problem isNP-hard.

Proof. The proof is similar to that for Theorem 3
except that the reduction is from the Hamiltonian p
problem. �
3.2. Lower bounds

For theCMSN problem, we use two different lowe
bounds on the cost of an optimal solution. The fi
is the cost of the minimum spanning tree, which
obvious. The second lower bound is1

k

∑
v∈V wv|rv|,

which is presented as Lemma 3.1.

Lemma 3.1. Consider a given graphG = (V ,E), root
r ∈ V , and a capacity constraintk. Let OPT be an
optimalCMSN for G, rooted atr, whose cost isCopt.
Then,

Copt �
1

k

∑
v∈V

wv |rv|.

Proof. Let t be the number of local access netwo
connected tor in OPT. Let q be one such local acce
network inOPT that is connected tor. Let Sq be the
set of nodes inq . Let Cq be the sum of the cost o
the local access networkq and the cost of the edg
connectingq to r. By triangle inequality,

Cq � max
v∈Sq

{|rv|} �
∑

v∈Sq
wv|rv|∑

v∈Sq
wv

�
∑

v∈Sq
wv|rv|

k

(
since

∑
v∈Sq

wv � k

)
.

For t local access networks connected tor in OPT,

Copt =
t∑

q=1

Cq �
∑

v∈V wv|rv|
k

. �
We first construct anMST T , of the given graph
G = (V ,E) and rootT at r. Next, we gather node
from T in groups such that the sum of vertex weig
in each group is betweenk/2 andk. Finally, for each
group of vertices, we construct a tour (cycle) spann
all vertices in that group, and connect the resulting tou
to r. For easier analysis, we introducedummyvertices
with zero weight, in place of real vertices, durin
the execution of the algorithm, which are remov
from the final solution using shortcutting. The form
algorithm is given in Fig. 1.

It can be verified that the algorithm outputs
feasibleCMSN for a givenk.

Theorem 3.3. AlgorithmCAPMINSPANET (Fig. 1) is
a 4-approximation algorithm for theCMSN problem.

Proof. We prove the theorem by showing that, for a
given instance, Algorithm CAPMINSPANET outputs a
solution that has cost at most 4 times the cost o
optimalCMSN.

Fig. 2 depicts the 3 situations (#1, #2, #3) enco
tered in the algorithm, where minimum cost tours
constructed. Since the edges of the graph obey tr
gle inequality, it can be seen that a tour—covering
the vertices in the concerned set—can be constru
by just doubling the necessaryMST edges. Remembe
that thedummyvertices, which serve only as plac
holders, are introduced to ensure that the unde
ing MST edges are still available for doubling. Th
dummy vertices are removed from the final solut
using shortcutting.

Except for those tours constructed in the last “fo
loop of the algorithm, every tour constructed by t
algorithm contains vertices whose weights add up
at leastk/2. Thus, for every tour the algorithm adds
new spoke, it is guaranteed that the sum of the ve
weights in that tour is at leastk/2. Notice that every
spoke added toT in this manner connectsr to the
closest vertex in the tour. Lett1, t2, . . . , tm be the set
of tours constructed by Algorithm CAPMINSPANET

for which a new spoke was added. LetΓ be the
set of vertices in tourst1, . . . , tm. Let ti be one such
tour. Let zi be the vertex inti that is connected
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Input: MST T , rooted atr , andk.
While there exists a vertexv �= r such thatw(Tv) � k and level ofv is maximum, do
If w(Tv) = k,
Remove all the edges incident on vertices inTv .
Construct a minimum cost tourt visiting all vertices inTv . // #1
Add edgerz (spoke) such thatz ∈ t and|rz| = minu∈t {|ru|}.

Else if
∑

i∈v’s childrenw(Tvi ) < k/2,
w(v) must be greater thank/2 asw(Tv) > k.
Add edgerv (spoke), and setv as adummyvertex.

Else
Initialize: S = ∅
Sortv’s children, in non-decreasing order, based on the weight of the subtrees rooted at them.
Let {v1, v2, . . . , vp} be the sorted list ofv’s children.
S = S ∪ {x | x ∈ Tvp }.
While w(S) < k/2, do

Choose an unprocessed childvi of v.
S = S ∪ {x | x ∈ Tvi }.

Remove all the edges incident on vertices inS.
Construct a minimum cost tourt visiting all vertices inS. // #2
Add edgerz (spoke) such thatz ∈ t and|rz| = minu∈t {|ru|}.

For every childvj of r , which is not part of any tour
Remove all the edges inTvj .
Construct a minimum cost tourt visiting all vertices inTvj . // #3

Removedummyvertices from the final solution using shortcutting of the tours.
Install cables along the edges of the network constructed thus far.

Fig. 1. Algorithm CAPMINSPANET.

Cspokes=
m∑

|rzi | �
∑

v∈Γ wv |rv|
r.

t

re

k/2

at

mal

t of

.

Fig. 2. (a) Doubling the edges inTv and shortcutting results in a tou
(b) Doubling the edges incident on the vertices inS and shortcutting
results in a tour. (c) Doubling the edges inTvj

and shortcutting
results in a tour.

to r. Among the vertices inti , sincezi is the closes
to r,

|rzi | �
∑

v∈ti
wv|rv|

k/2
.

Thus, for m tours for which the new spokes we
added,
i=1

� 2×
∑

v∈V wv|rv|
k

(sinceΓ ⊂ V )

� 2× Copt (by Lemma 3.1).

Since the cost of the local access networks is
most twice the cost of theMST, and the cost of the new
spokes that were added is at most twice the opti
CMSN, we conclude that Algorithm CAPMINSPANET

outputs a solution of cost at most 4 times the cos
an optimalCMSN. �

4. The 2VC-CMSN problem

For a given graphG = (V ,E), root r ∈ V , and
a capacityk, the 2VC-CMSN problem asks for a
minimum cost partitioning of the set of verticesV \{r}
into groups of weight at mostk, with the vertices in
each group along withr being 2-vertex-connected
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Notice that a feasible solution to the2VC-CMSN
problem ensures that the network remains connected
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4.2. Improved approximation analysis
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even after the removal (failure) of a non-root vert
For the2VC-CMSN problem, we show that Altinkeme
and Gavish’s algorithm for the delivery problem [
finds a feasible solution that is within a factor 3.5
an optimal solution.

4.1. Delivery problem

Given a set of customers (nodes), each havin
positive demand, a depot (root node)s, and vehicles
of capacityq , the delivery problem asks for route
for the vehicles such thatthe vehicles depart froms,
serve a set of customers following their designa
routes and return tos. The objective is to minimize
the total length (cost) of the routes without violati
the capacity limitq and visiting each customer exact
once. Altinkemer and Gavish [2] presented a travel
salesman (TSP) tour partitioning algorithm for this
problem, which finds a feasible solution of cost
most 2+ ρTSP times the cost of an optimal solutio
whereρTSP is the best achievable approximation ra
for theTSP problem. Their idea is to construct aTSP
tour visiting all the customers, optimally partition th
tour into paths with the sum of customer deman
in each path being at mostk, and connect the two
ends of each path tos. Using the fact that an optima
TSP tour is a lower bound on an optimal solutio
for the delivery problem, they were able to sho
that the cost of the solution produced by such
algorithm is at most 2+ ρTSP times than that of an
optimal solution (showing that the cost to connect
paths tos is at most 2 times the cost of an optim
solution).

Notice that the solution returned by the delive
algorithm for capacityq = k with depots = r is a
feasible solution for the2VC-CMSN problem. Since
an optimalTSP tour is not a lower bound for the2VC-
CMSN problem, their approximation ratio of 2+ ρTSP

does not apply to the2VC-CMSN problem. Rather
one can interpret the cost of theTSP tour, which they
partition, as 2 times the cost of anMST. Since theMST
cost is a lower bound for the2VC-CMSN problem,
Altinkemer and Gavish’s analysis will guarantee
ratio of 4 for the2VC-CMSN problem.
Notice that an optimal2VCSS cost is a lower bound
for the2VC-CMSN problem as2VC-CMSN problem is
a generalization of the2VCSS problem (2VCSS prob-
lem is the2VC-CMSN problem with k = ∞). Sup-
pose that Altinkemer and Gavish’s algorithm for t
delivery problem uses Christofides’TSP algorithm [5]
to construct the initial tour. In this approach, we st
with anMST T of the graph. A minimum weight per
fect matching of the odd-degree nodes ofT in an ar-
bitrary graph is then computed and added toT . The
resulting Eulerian graph can then be converted in
TSP tour using shortcutting. Frederickson and JáJá
showed that the matching found by Christofides’ al
rithm, (on its way to finding an approximateTSP tour)
is no more than half the cost of an optimal2VCSS.
As MST cost is a lower bound for the2VCSS prob-
lem, the cost of the Christofides’TSP tour is at most
1.5 times the cost of an optimal2VCSS [7]. Since an
optimal 2VCSS is a lower bound for the2VC-CMSN
problem, Altinkemer and Gavish’s algorithm actua
guarantees a ratio of 3.5 for the2VC-CMSN problem.

Theorem 4.1. Altinkemer and Gavish’s algorithm fo
the delivery problem is a3.5-approximation for the
2VC-CMSN problem.

4.3. Unit vertex weights withk = 2

The special case when all vertices have unit weig
andk = 2 is polynomial time solvable using min-co
matching. LetG = (V ,E) be the given graph. Le
|uv|G be the cost of the edge connecting verticeu
andv in G. Let r be the root vertex inG. Construct a
graphG′ = (V1 ∪ V2,E1 ∪ E2 ∪ E3) as follows:

• SetV1 = {v′ | v ∈ V }.
• Introduce an edge, intoE1, of cost |xy|G +

|rx|G + |ry|G between verticesx ′ andy ′ in V1,
if x ′ �= y ′.

• SetV2 = {v′′ | v ∈ V }.
• Introduce an edge, intoE2, of cost zero betwee

verticesx ′′ andy ′′ in V2, if x ′′ �= y ′′.
• for eachv ∈ V , introduce an edge of cost|rv|G,

into E3, between verticesv′ andv′′ in G′ (v′ and
v′′ correspond to the same vertexv ∈ V ).
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Lemma 4.1. The cost of a min-cost perfect matching
of the vertices inG′ is equal to the cost of an optimal
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solution for the2VC-CMSN problem onG.

Proof. We use the notations used above to comp
the proof. It suffices to prove the following:

(1) Given a2VC-CMSN of costω in G, there exists a
perfect matching of costω in G′.
If a local access network in the given2VC-CMSN
contains 2 verticesx and y, then match the
correspondingx and y, belonging toV1, in G′.
If a local access network in the given2VC-CMSN
contains just one vertexx, then matchx ′ ∈ V1 and
x ′′ ∈ V2. By doing this, all vertices belonging t
V1 in G′ will be matched while there might b
some vertices inV2 that are not matched. Sinc
all vertices inV1 are matched, an even number
vertices inV2 will be left unmatched, and they ca
be paired-up arbitrarily. Since the cost of match
x ∈ V2 andy ∈ V2 is zero, the cost of the perfe
matching would be the same as the cost of
2VC-CMSN.

(2) Given a matching of costω in G′, there exists a
2VC-CMSN of costω in G.
Let n = |V |. Thus,|V ′| = 2n. Let (x, y) denote
a matching between verticesx and y. If x, y ∈
V1, connect the corresponding two vertices inG

with r to form a cycle. Ifx ∈ V1 and y ∈ V2,
connect the corresponding vertex (bothx and y

will correspond to the same vertex inV ) to r. �
Theorem 4.2. The 2VC-CMSN problem with unit
vertex weights andk = 2 is polynomial time solvable

5. Open questions

Unlike theCMST problem, for which the approx
imation ratio for uniform vertex-weighted graphs
smaller than that for non-uniform vertex-weight
graphs, our algorithm guarantees an approximation
tio of 4 for all graphs. Are there better approximatio
for the CMSN problem in uniform vertex-weighte
graphs? Also, are there better approximations for g
metric graphs? The lower bounds that we used
weak as one can easily construct an instance wh
optimalCMSN cost is at least�(n/k) times the cos
cost of the spoke lower bound (Lemma 3.1). We
lieve that finding better lower bounds could help fi
better algorithms. One other interesting open prob
would be to approximateCMSNs for general graph
(whose edges may not satisfy triangle inequality).
do not know at this time how to obtain a non-trivi
approximation ratio for general graphs.
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