Revisiting Esau-Williams’ Algorithm: On the Design of Local Access Networks'

Raja Jothi and Balaji Raghavachari
Department of Computer Science
University of Texas at Dallas
Richardson, Texas 75083-0688
E-mail: {raja,rbk}@utdallas.edu

Corresponding author: Raja Jothi
Department of Computer Science
Eric Jonsson School of Engineering and Computer Science
University of Texas at Dallas
P.O. Box 830688, MS EC31
Richardson, TX 75083-0688
Phone: (972) 918-9387
Fax: (972) 883-2349

Email: raja@utdallas.edu

! A preliminary version of this paper appeared as an abstract in the proceedings of the 7th INFORMS Telecommuni-
cations Conference, 2004. Research supported in part by the National Science Foundation under grant CCR-9820902.

Abstract

Given a set of nodes, each associated with a positive number denoting the traffic to be routed
to a central node (root), the capacitated minimum spanning tree (CMST) problem asks for a
minimum cost spanning tree, spanning all nodes, such that the amount of traffic routed from a
subtree, linked to the root by an edge, does not exceed the given capacity constraint k. The cost
of a tree is defined to be the sum of cost of the edges in the tree. The CMST problem is NP-hard
and has been extensively studied for the past 40 years. A major problem with most of the pro-
posed heuristics is that their worst-case running-times may not necessarily be polynomial, i.e.,
they could be exponential. The most popular and efficient algorithm for the CMST problem is
due to Esau and Williams (EW), presented in 1966, with running time O(n? logn). Almost all of
the heuristics that have been proposed so far, use the EW algorithm as a benchmark to compare
their results. Any other heuristic that outperforms the EW algorithm do so with an enormous
increase in running time. In this paper, we propose a modification to the EW algorithm. Our
proposed modification guarantees better quality solutions when compared to that produced by
the EW algorithm while still maintaining the worst-case run-time complexity at O(n?logn).
Experimental results on benchmark instances show that the modified EW algorithm obtains

improvements of up to 17% when compared to the EW algorithm.

Keywords: Capacitated minimum spanning trees, network design, optimization

1 Introduction

We consider the well-known Capacitated Minimum Spanning Tree (CMST) problem. Given a set
of nodes, each associated with a positive number denoting the traffic to be routed to the central
node (root), the CMST problem asks for a minimum cost spanning tree, spanning all nodes, such
that the amount of traffic routed from a subtree connected to the root does not exceed the given
capacity constraint k. The cost of a tree is defined to be the sum of cost of the edges in that tree.
The CMST problem can formally be defined as follows.

CMST: Consider a given undirected, vertex-weighted, complete graph G' = (V,), where V is
the set of nodes and F is the set of edges connecting the nodes, root node r € V, and a positive
integer k. Edges have positive costs associated with them. The CMST problem asks for a minimum
cost spanning tree, with the sum of the vertex-weights of every subtree connected to r being at
most k.

In the design of telecommunication networks, the CMST problem corresponds to the designing
of a minimum cost tree network by installing expensive (fiber-optic) cables along its edges, with a
capacity constraint k& on the cable being used. Since the cable capacity is k, every subtree connected
to the root can route a traffic of at most k& to the root. Access networks are the ends or tails of
networks. If local access represents most of the total network cost, it is critical to design low-cost
local access networks. A CMST is a good choice for local access network design if the access network
is required to be a tree. We refer the reader to Cahn’s book [5] for more details on how the CMST
problem represents a good design for local access network.

We use the terms nodes and vertices interchangeably. The decision version of the CMST problem
is NP-complete [7, 11], even when vertices have equal weights and & = 3. However, the problem is
polynomial-time solvable if all vertices have unit weights and k& = 2 [7]. Even the geometric version
of the problem, where the edge lengths are the Euclidean distance between the vertices, remains
NP-complete.

The CMST problem has been extensively studied in Computer Science and Operations Research
for the past 40 years. Numerous heuristics and exact algorithms have been proposed (see [3, 8, 16]
for detailed surveys). The size of the problem instances that can be solved to optimality by exact
procedures, in reasonable amount of time, is still far from the size of the real-life instances. Current
best heuristics for the CMST problem, in terms of the quality of the solutions produced, are due
to Amberg et al. [3], Sharaiha et al. [14], and Ahuja et al. [1]. A major problem with these
heuristics is that their worst-case running-times are not necessarily polynomial, i.e., they could be
exponential [10, 15]. Because of their high running-times, they may not be practical for solving
large problem instances. The most popular and efficient algorithm for the CMST problem is due to
Esau and Williams [6], with a worst-case running time of O(n?logn), where n is the total number
of nodes. Even though there are numerous other heuristics that claim to outperform Esau-Williams
(EW) algorithm, none of them do so without substantial increase in running time.

In this paper, we propose a modification to the EW algorithm for the CMST problem. We will

henceforth be referring to the modified version of the EW algorithm as the modified EW (MEW)
algorithm. Theoretically, the worst-case running time of the MEW algorithm is same as that of
the EW algorithm, i.e., O(n*logn). However, in practice, the running time of MEW algorithm
would be constant d < 21 times than that of the EW algorithm. In terms of the quality (cost)
of the solutions produced, the MEW algorithm always outperforms or matches the EW algorithm.
Experimental results on benchmark instances indicate that the MEW algorithm produces better
results 67% of the time, when compared to the EW algorithm. There are instances for which we
obtain improvements of 17%. For the most difficult set of test instances, in which the root vertex
is placed in the corner, the MEW algorithm produces better results for 30% of the benchmark

instances, when compared to the EW algorithm.

2 Overview of the EW Algorithm

Kruskal’s algorithm [9] for constructing a minimum spanning tree (MST) starts with n subtrees,
each containing just a node, and starts merging these subtrees until there is only one tree left.
Merging of subtrees is based on the proximity of subtrees. In each step, two closest subtrees are
merged by connected them using an edge. The final tree obtained in this manner is guaranteed to
be an MST. A slightly modified version of the Kruskal’s algorithm can be used to find a feasible
CMST for a given instance. One of the modifications required in the Kruskal’s algorithm is to
connect a growing subtree to the root vertex once the sum of the weights of the vertices in the
subtree reaches the capacity k. In addition, we should not allow two subtrees whose sum of weights
exceed k to merge since it would result in a subtree of weight greater than k. If there exists no
two subtrees that can be merged, then all the remaining subtrees are connected to the root using
direct edges.

The EW algorithm, instead of using proximity to merge two different subtrees, introduces the
notion of “savings” to merge any two subtrees. While Kruskal’s algorithm merges two closest
subtrees at any point in time, the EW algorithm computes the savings involved in merging any two
subtrees, and connects the two subtrees that produces the maximum savings (most negative value).
Let dist be a n x n matrix, with dist(¢,) denoting the distance (or cost of the edge) between
nodes ¢ and j. Kruskal’s algorithm, in each iteration, chooses the smallest entry from the dist
matrix, and connects the two nodes (merges the two subtrees in which the corresponding nodes are
present) corresponding to that entry if no cycle is formed. The EW algorithm, on the other hand,

computes a n X n savings matrix using the following formula:
savings(s,j) = dist(¢, j) — dist(¢,r)

where r is the root vertex. The EW algorithm works exactly the same way as the Kruskal’s
algorithm, except on the savings matrix instead of the dist matrix. Unlike Kruskal’s algorithm,

a merge is attractive only if the savings are negative. Subtrees ¢ and j, which produce maximum

savings (most negative value) and whose sum of vertex weights is less than or equal to & are merged,
and the savings matrix is recomputed for the next step.

A well-known major problem with the EW algorithm is when all the subtrees formed thus far
have weight just over k/2, making it impossible to merge any two of them [13]. In this case, the
EW algorithm will connect each subtree directly to the root. This could result in almost twice
as many subtrees compared to an optimal solution. Fig. 1 depicts this pictorially for a sample
scenario. While an optimal solution is of cost 2+, the solution produced by the EW algorithm will
be of cost 3+.

r r

(a) (b)
Figure 1: Problem instance with k = 3. (a) Solution obtained by the EW algorithm with cost 3+.
(b) Optimum solution with cost 2+.

Consider Fig. 2(a) for the worst-case scenario, with 10,000 unit weight nodes, a root node, and
k = 100. Let the cost of edges connecting the root node r to any other node be M = 1,000, 000.
Let the nodes be scattered in groups of 51 nodes with the cost of the edge connecting any two nodes
in the same group being 1 and the cost of the edge connecting nodes from two different groups
be 1+ ¢, where ¢ = 1/M. For this sample scenario, the EW algorithm will form subtrees of size
51 as shown in Fig. 2(b), while an optimal solution would form subtrees of size exactly £ = 100
connected to r. Thus, the cost of the solution obtained by the EW algorithm will be approximately
M % 10,000/51 ~ 196 M, while the cost of an optimal solution is roughly 100M. Generalizing this
example, one can construct examples for which the EW algorithm will produce solutions of cost

almost twice as much as an optimal solution.

3 The MEW Algorithm

3.1 Motivation

The main motivation to improve the EW algorithm arose from the fact that the EW algorithm
could end up with a solution with twice the number of subtrees as compared to an optimal solution,
which in turn could increase the cost of the obtained solution. Our initial idea was to reduce the
number of almost-equal weight subtrees, especially subtrees of weight just over £/2, as this was
the major cause of concern in the EW algorithm. To eliminate this problem, merging of subtrees
should be done in a more controlled fashion. It could mean prioritizing the subtrees based on their

weights so that at any point during the execution of the algorithm, subtrees of greater weight have

195 clusters, each containing 51 nodes 195 subtrees, each with 51 nodes

/ \\ Cluster with / \\ Subtree with
T . 55/nodes - oo 55}odes

Fdge-cost = M

(b)

Figure 2: (a) Problem instance with 10,000 unit weight nodes and k = 100. (b) Solution obtained
by the EW algorithm with cost ~ 196 M.

an influence in the merging process. Giving a higher priority to subtrees of greater weight will allow
subtrees of greater weight to grow bigger and bigger (up to to a weight of k), thereby reducing the
possibility of almost-equal weight subtrees with weight just over k/2.

In what follows, we first present the reasoning the MEW algorithm, followed by the algorithm
itself. There are two kinds of costs involved in constructing a CMST. We have the cost of connecting
the non-root nodes together which we call the subtree cost, and the cost of connecting the subtrees,
of weight at most k, to the root using a “radial spoke” which we call as the spoke cost. In fact,
the cost of an optimal CMST can be bounded from below by two different quantities, namely the
subtree cost lower bound (TLB), i.e., the MST cost, and the spoke lower bound (SL.B), which is
the sum of the radial distances from the root to all the nodes divided by & [2]. Kruskal’s algorithm
and its variants only look at the subtree cost, and can be viewed as being based on TLB. The EW
algorithm tries to balance the subtree cost with the spoke cost, and therefore tries to use both TLB
and SLB.

We try to improve this balance achieved, by making the following observation. The EW algo-
rithm makes a decision to add an edge (¢, j) to connect two subtrees (one containing ¢ and the other
containing j) without considering the sizes of the two subtrees being merged. In reality, only TLB
is independent of the subtree size. On the other hand, since the SLLB is proportional to the number
of nodes in the subtree, more weight should be given to a subtree as it gets larger. In other words,
when we add an edge to another subtree that takes us closer to the root, we save more when there
are more nodes in this subtree than not.

The example in Fig. 3 illustrates this idea better. Let k& be 10. Out of the several growing
subtrees, let us focus on the following three subtrees: subtree i with weight 5, subtree 7 with
weight 2, and subtree w with weight 1. Let the cost of the edge between w and j be ¢, and the
cost of the edge between w and ¢ be ¢ + ¢, where € << ¢. Let the cost of the edge connecting 7 (or

J) to root r be s > ¢, and the cost to connect w to r be t < s. According to the EW algorithm,

Figure 3:

e savings(i,w) = dist(:,w) — dist(i,r) = (c+€) — s,
e savings(j, w) = dist(j, w) — dist(j,r) =c— s.

Recall that merging of subtrees is attractive only when the savings is negative. Since the potential
savings from connecting j to w is lesser than that of connecting ¢ to w, the EW algorithm will
choose to connect subtrees 7 and w. As per the MEW algorithm, the option of connecting ¢ to
w is considered depending on the value of a parameter ¢ (explained later in Section 3.2). Doing
this could potentially prevent situations such as the one discussed in Section 2. We suggest the

following modification to the EW algorithm to improve its performance.

3.2 Modified Savings Equation

Let w; denote the sum of the weights of the vertices in subtree :. We transformed the EW savings

equation into the following weighted equation,

savings(i,j) = (dist(i,j) — dist(z, r)) X w?

where § is a user-defined constant between 0.0 and 1.0. Note that when ¢ = 0.0, the above equation
is same as the EW algorithm. The rest of the EW algorithm is left unchanged. Since computation
of w; is part of the EW algorithm, the time to compute the weighted equation is same as that of
computing the EW savings equation.

Our experiments showed that it is not easy to fix 4. In graphs with huge vertex weights
and relatively small edge costs, fixing § to some value could cause subtrees with more weight to
completely dominate the savings value produced by the new savings equation. Similarly for graphs
with huge edge costs and negligible vertex weights, fixing § to any value might not produce the
desired result. Thus, no matter how ¢ is chosen, one can construct a graph for which the choice of
§ is wrong.

Preliminary tests on some benchmark instances showed that best solutions were obtained most

often for a fixed ¢ value in the range 0 to 0.25. Fig. 4(a) shows the performance plots for five

Cost of the tree for a given delta (k=3) Cost of the tree for a given delta (k=100)

810 T s T r : : —
4 1300 | * S
ol tc50_1 —+— P E
800 ; tc50_2 - | KRR e e KX KooK K
G888 tc40_3 ---*--- B e
; tc40_4 o *ooX
790 | SR e tc40_5 —-m- 4 1200 | 4

o | | M

1100 B

? ?
[=} o
o o
3 3 X%
= = X R AR Bels
%X KT | B N]
1000 - / e
/ cm50k_r1 —+—
b m ; cm50k_r2 ---x-—-
B e e R e B S | cm50Kk_r3 ---x---
; cm50k_r4 &
N B cm50k_r5 —-m--
740 | N\ / J 900 -
Yeoox KKk
N
730 ,r"\x,,x,,«x——x B 5 R R e = S L B
ek Begegegeg-8ET
Il Il Il Il 800 Il Il Il
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Delta Delta

(a) (b)

Figure 4: Benchmark instances with unit vertex weights: (a) edges satisfying triangle inequality (b)
edges not satisfying triangle inequality

benchmark instances (tc40,.tzt,k = 1,...,5) obtained from OR-library [4] with unit weight vertices
and k = 3. Fig. 4(b) shows the performance plots for five benchmark instances (em50..tzt, k =
1,...,5) obtained from OR-library with non-unit vertex weights given by priz50.tzt [4] and k =
100. After extensive testing on 105 benchmark instances (and numerous other randomly generated
graphs), a clear pattern on ¢ value was observed. For the 105 benchmark instances, Table 1 shows
the values of ¢ for which the low-cost solutions were obtained. Every instance was tested with

varying & values. We chose ¢ in fixed increments of 0.05.

5 Number of best solutions
0.00 48
0.05-0.25 72
0.30-0.50 19
0.55-0.75 9
0.80-1.00 6

Table 1: Number of low-cost solutions obtained for different values of 4.

Despite the clear pattern on the value of ¢ for which the best solutions were obtained, we
designed the MEW algorithm to run for constant d times, each time with a different ¢ value. This
increases the worst-case running time only by a constant factor d (number of different § values).
We chose d to be 21, with values of § = {0.0,0.05,0.10,...,1.00}. Out of the 21 possible solutions
obtained, the MEW algorithm returns the best solution. Even though the running time of the
MEW algorithm is theoretically O(n?logn), in practice, for 21 values of §, the running time will

be 21 times than that of the EW algorithm, regardless of the value of n. If the practical running
time is of paramount concern, one can always choose to run the MEW algorithm for just 6 values
of § (say 6 = {0.0,0.05,...,0.25}), which would make the running time to be 6 times than that of
the EW algorithm, but the quality of the solution may be compromised.

As for as the problem instance in Fig. 2(a), for some § value, the MEW algorithm, at some
point during the execution of the MEW algorithm, will actually consider introducing edges between
nodes in different clusters because of its weighted savings equation. This is unlike the EW algorithm
in which é = 0, the edges between nodes in different clusters will never be considered during the
course of the algorithm, thereby producing twice the number of subtrees compared to an optimal
solution 2(b).

Theorem 3.1 For a given CMST instance, the MEW algorithm always outperforms or matches
the EW algorithm in terms of the cost of the solution obtained.

Proof. The MEW algorithm with § = 0.0 is just the EW algorithm. The fact that we run the
MEW algorithm for d different values of ¢, one of which is 0.0, and output the best (low-cost) out

of the d possible solutions completes the proof. |

4 Experimental Results

For comparison purposes, we evaluated the performance of the MEW algorithm on benchmark
instances from OR-library [4]. For a given instance, we use n to denote the number of nodes.

Our test set included 105 benchmark instances. The test set was classified into three groups of
problems. Our first two test groups are the tc and te groups (30 instances each) with unit vertex
weights. Edges in both tc and te problems satisfy triangle inequality. In tc¢ problems, the root was
placed in the center of the vertex scatter and in te problems, the root was placed in the corner of
the vertex scatter. Both tc and te groups contain 10 problems each, 5 of size n = 40 (tc40 and
ted0_x,x = {1,...,5}) and 5 of size n = 80 (£c80_ and te80_,+ = {1,...,5}). Every problem of
size n = 40 was tested with values of £ = {3,5,10} and every problem of size n = 80 was tested
with values of k = {5, 10,20}.

Test results for tc problems (Table 2) indicate that the MEW algorithm produces better solutions
than the EW algorithm in 67% of the instances. On average, solutions obtained by the MEW were
off by 3.1% when compared to the known lower bounds for the respective problems, while solutions
obtained by the EW algorithm were off by 3.9%. As expected, test results for the tougher te
problems (Table 3) were not as good as the ones obtained for t¢ problems. Our algorithm produced
better solutions in only 30% of the te instances.

The third group of problems that we tested was the ¢m group (45 instances), with non-unit
vertex weights. Unlike tc and te problems, edges in ¢m problems do not satisfy triangle inequality.
The ¢m group of problems consists of 15 problems, 5 of size n = 50 (emb0r,x = {1,...,5}), 5 of
size n = 100 (¢m100r«, x = {1,...,5}), and 5 of size n = 200 (¢m200r+,+« = {1,...,5}). Every

cm problem was tested with values of & = {100,200,400}. Our test results for the ¢m problems
(Table 4) indicate that the MEW algorithm produces better solutions in 67% of the test instances.
The MEW algorithm obtains improvements of up to 17% when compared to the EW algorithm.
On average, the MEW algorithm obtains an improvement of 1.6% when compared to the EW

algorithm.
Solutions % Gap

Problem | » | k | EW [MEW | LBf | EW | MEW
tc40.1 41 3 774 753 | 742* | 4.31 1.48
tc402 41 3 748 729 717 4.32 1.67
tc40.3 41 3 727 727 716 1.54 1.54
tc40.4 41 3 796 789 775 2.71 1.81
tc40.5 41 3 760 756 | 741* | 2.56 2.02
tc40.1 41 5 597 595 | 586* 1.88 1.54
tc402 41 5 588 583 578 1.73 0.87
tc40.3 41 5 607 607 | 577* | 5.20 5.20
tc40.4 41 5 639 623 | 617* | 3.57 0.97
tc40.5 41 5 615 615 600 2.50 2.50
tc40_1 41 10 506 506 | 498* 1.61 1.61
tc402 41 10 504 502 490 2.86 2.45
tc40.3 41 10 508 508 | 500* 1.60 1.60
tc40.4 41 10 530 530 | 512* | 3.52 3.52
tc40.5 41 10 504 504 | 504* | 0.00 0.00
tc80.-1 81 5 | 1184 1182 1094 | 8.23 8.04
tc802 81 5 | 1153 1153 | 1090 | 5.78 5.78
tc80.3 81 5 | 1144 1127 1067 | 7.22 5.62
tc80.4 81 5 | 1146 1136 1070 | 7.10 6.17
tc80.5 81 5 | 1367 1352 1268 | 7.81 6.62
tc80.-1 81 10 948 933 878 7.97 6.26
tc802 81 10 929 929 875 6.17 6.17
tc80.3 81 10 908 904 869 4.49 4.03
tc80.4 81 10 921 914 863 6.72 5.91
tc80.5 81 10 | 1025 1025 998 2.71 2.71
tc80.-1 81 | 20 862 842 | 834* | 3.36 0.96
tc802 81 | 20 834 834 | 820* 1.71 1.71
tc80.3 81 | 20 846 836 | 828" | 2.17 0.97
tc80.4 81 | 20 830 830 | 820* 1.22 1.22
tc80.5 81 | 20 948 936 | 916* | 3.49 2.18
* Optimum solution 1 Data obtained from [12]

Table 2: Computational results for the tc problems with unit vertex weights (n - number of nodes,
k - capacity constraint, LB - Lower bound).

5 Conclusion

We presented the MEW algorithm, a modified version of the popular EW algorithm, for finding
CMSTs. In the MEW algorithm, the original EW savings equation is replaced with a weighted
savings equation. Our proposed modification may help in reducing the number of subtrees con-
nected to the root vertex, which will result in a lower cost solution. Our experiments show that, in

majority of the instances, the MEW algorithm outperforms the EW algorithm in terms of the cost

Solutions % Gap
Problem [n [¥ | EW | MEW | LBf | EW [MEW

te40_1 41 3 | 1208 1208 1190 1.51 1.51
te402 41 3 | 1140 1140 1103 3.35 3.35
te403 41 3 | 1148 1139 | 1115* 2.96 2.15
te40.4 41 3 | 1153 1153 1132 1.86 1.86
te40.5 41 3 | 1139 1124 1104 3.17 1.81
te40_1 41 5 867 867 830 4.46 4.46
te402 41 5 822 822 792 3.79 3.79
te403 41 5 820 820 797 2.89 2.89
te40.4 41 5 870 867 814 6.88 6.51
te40.5 41 5 812 805 784 3.57 2.68
te40_1 41 | 10 639 639 596 7.21 7.21
te402 41 | 10 607 607 573 5.93 5.93
te403 41 | 10 587 587 568 3.35 3.35
te40.4 41 | 10 600 600 596 0.67 0.67
te40.5 41 | 10 593 593 572% 3.67 3.67
te80_1 81 2618 2618 2531 3.44 3.44

5
te802 81 5 | 2613 2613 2522 3.61 3.61
te803 81 5 | 2707 2701 2593 4.40 4.17
5
5

te80.4 81 2639 2633 2539 3.94 3.70
te80.5 81 2578 2578 2458 4.88 4.88
te80_1 81 | 10 | 1716 1716 1631 5.21 5.21
te802 81 | 10 | 1713 1713 1602 6.93 6.93
te803 81 | 10 | 1781 1781 1660 7.29 7.29
te80.4 81 | 10 | 1792 1691 1614 11.03 4.77
te80.5 81 | 10 | 1708 1708 1586 7.69 7.69
te80_1 81 | 20 | 1308 1308 1256 4.14 4.14
te80_1 81 | 20 | 1292 1292 1201 7.58 7.58
te80_1 81 | 20 | 1342 1341 1257 6.76 6.68
te80_1 81 | 20 | 1372 1372 1247 10.02 10.02
te80_1 81 | 20 | 1290 1289 1231 4.79 4.71

* Optimum solution t Data obtained from [12]

Table 3: Computational results for the te problems with unit vertex weights (n - number of nodes,
k - capacity constraint, LB - Lower bound).

of the solutions obtained. Overall, the MEW algorithm is guaranteed to at least match the costs
of the solutions obtained by the EW algorithm. The effective running time of the MEW algorithm
is only a constant d < 21 times than that of the EW algorithm.

References

[1] R.K. Ahuja, J.B. Orlin and D. Sharma, A composite neighborhood search algorithm for the
capacitated minimum spanning tree problem, Oper. Res. Letters 31 (2001) 85-94.

[2] K. Altinkemer and B. Gavish, Heuristics with constant error guarantees for the design of tree
networks, Management Science 34 (1988) 331-341.

[3] A. Amberg, W. Domschke and S. Vof}, Capacitated minimum spanning trees: Algorithms using
intelligent search, Combinatorial Optimization: Theory and Practice 1 (1996) 9-39.

10

[4] J.E. Beasley, OR-Library, http://www.ms.ic.ac.uk/info.html.

[5] R.S. Cahn, Wide Area Network Design: Concepts and Tools for Optimization, Morgan Kauf-
mann, 1998.

[6] L.R. Esau and K.C. Williams, On teleprocessing system design, IBM Systems Journal 5 (1966)
142-147.

[7] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-

completeness, W.H. Freeman, San Francisco (1979).

[8] R. Jothi and B. Raghavachari, Approximation algorithms for the capacitated minimum span-
ning tree problem and its variants in network design, in Proc. International Colloquium on

Automata, Languages and Programming (2004) 805-818.

[9] J.B. Kruskal Jr., On the shortest spanning subtree of a graph and the traveling salesman
problem, Proc. Amer. Math. Soc. 7 (1956) 48-50.

[10] J. Orlin, MIT, Personal communication.

[11] C.H. Papadimitriou, The complexity of the capacitated tree problem, Networks 8 (1978) 217-
230.

[12] R. Patterson, H. Pirkul and E. Rolland, A memory adaptive reasoning technique for solving
the capacitated minimum spanning tree problem, Journal of Heuristics 5 (July 1999) 159-180.

[13] T.G. Robertazzi, Planning Telecommunication Networks, Wiley-IEEE Press, 1999.

[14] Y.M. Sharaiha, M. Gendreau, G. Laporte and I.H. Osman, A tabu search algorithm for the
capacitated shortest spanning tree problem, Networks 29 (1997) 161-171.

[15] D. Sharma, Univ. of Michigan-Ann Arbor, Personal communication.

[16] S. Vof, Capacitated minimum spanning trees, In C.A. Floudas and P.M. Pardalos (eds.),
Encyclopedia of Optimization 1 (2001) 225-235.

11

Problem | n | k¥ [EW [MEW [% Gap

cmb50.rl 50 | 100 | 1142 1137 -0.44
cmb50.r2 50 | 100 | 1001 1001 0.00
cmb50.r3 50 | 100 | 1249 1232 -1.36
cmb50.r4 50 | 100 829 808 -2.53
cmb50.15 50 | 100 968 948 -2.07
cmb50.rl 50 | 200 717 713 -0.56
cmb50.r2 50 | 200 658 658 0.00
cmb50.r13 50 | 200 739 739 0.00
cmb50.r4 50 | 200 571 568 -0.53
cmb50.r5 50 | 200 638 638 0.00
cmb50.rl 50 | 400 518 514 -0.77
cmb50.r2 50 | 400 545 538 -1.28
cmb50.r3 50 | 400 541 541 0.00
cmb50.r4 50 | 400 491 490 -0.20
cmb50.15 50 | 400 513 508 -0.97
cm100rl | 100 | 100 700 686 -2.00
cm100r2 | 100 | 100 766 759 -0.91
cm100r3 | 100 | 100 749 721 -3.74
cm100r4 | 100 | 100 562 529 -5.87
cm100rx5 | 100 | 100 562 537 -4.45
cm100rl | 100 | 200 315 304 -3.49
cm100r2 | 100 | 200 335 316 -5.67
cm100r3 | 100 | 200 302 299 -0.99
cm100r4 | 100 | 200 278 278 0.00
cm100rx5 | 100 | 200 308 254 | -17.53
cm100rl | 100 | 400 201 201 0.00
cm100r2 | 100 | 400 192 188 -2.08
cml100r3 | 100 | 400 183 183 0.00
cm100r4 | 100 | 400 194 193 -0.52
cm100rx5 | 100 | 400 215 205 -4.65
cm200rl | 200 | 100 | 1332 1332 0.00
cm200rx2 | 200 | 100 | 1703 1662 -2.41
cm200r3 | 200 | 100 | 1682 1681 -0.06
cm200r4 | 200 | 100 | 1304 1304 0.00
cm200rx5 | 200 | 100 | 1306 1305 -0.08
cm200rl | 200 | 200 500 500 0.00
cm200r2 | 200 | 200 621 621 0.00
cm200r3 | 200 | 200 702 693 -1.28
cm200r4 | 200 | 200 517 504 -2.51
cm200rx5 | 200 | 200 504 501 -0.60
cm200rl | 200 | 400 301 301 0.00
cm200r2 | 200 | 400 329 329 0.00
cm200r3 | 200 | 400 393 392 -0.25
cm200r4 | 200 | 400 308 304 -1.30
cm200r5 | 200 | 400 329 329 0.00

Table 4: Computational results for the cm problems with non-unit vertex weights (n - number of
nodes, k - capacity constraint).

12

