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ABSTRACT

In reliable multicast, receivers use negative acknowledgments
(NAKs) to inform the sender about their packet loss. The
growth in the number of NAK messages received by the
sender results in the well-known feedback (or NAK) im-
plosion problem. Therefore, one important issue for reli-
able multicast protocols is to utilize an effective mechanism
to collect NAK messages from the receivers. One way to
avoid feedback implosion at the sender site is to place NAK-
suppression agents on the internal nodes (routers) of the net-
work. These agents will forward a single copy of the incom-
ing NAK messages toward the sender site and will suppress
additional redundant copies coming from the receivers.

In this paper, we consider an agent placement (activation)
problem for reliable multicast. First, we assume a network
environment where a number of internal nodes (routers)
have NAK-suppression capabilities. Then, we try to select a
subset of these nodes for NAK suppression task for a given
reliable multicast application. Our main selection criteria
is to choose a minimum number of such nodes for the task
and have a notion of load-balancing among them. In this
context, we study two agent activation problems: the Load-
Balanced Agent Activation Problem (LBAAP) and the Bud-
geted Agent Activation Problem (BAAP) and present effi-
cient algorithms for optimal activation of agents. The prob-
lems that we consider in this paper are generalized versions
of the respective problems introduced by Daescu et al. [3].
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1. INTRODUCTION

A number of multicast applications require timely receiver
feedback. In a reliable multicast application, receivers use
negative acknowledgments (NAKs) to inform the source abo-
ut packet loss so that the source can retransmit the missing
data. However, as the size of the receiver population in-
creases, collecting receiver feedback becomes a significant
problem for the source. This problem is known as the mul-
ticast feedback (or NAK) implosion problem[13, 16].

Bombardment of the sender by numerous, often redun-
dant, feedback messages from receivers results in feedback
implosion problem. Typically, loss of a packet triggers one
or more receivers, which did not receive that packet, to send
NAK messages to the sender. For a packet loss, the sender
could potentially receive multiple NAKs. After all, it is
enough that the sender receives just one NAK for a packet
loss rather than receiving redundant NAKs. Processing re-
dundant NAKs could easily impede the performance of the
sender, and thus the network as a whole.

One common approach to prevent feedback implosion in
reliable multicast is to use NAK-suppressing agents in the
network. These agents are software modules located in rout-
ers (or in server machines co-located with routers). Fach
NAK-suppressing agent incurs processing and memory over-
heads for the router hosting it. This overhead depends on
the number of reliable multicast groups for which the node
is serving as a NAK-suppression agent. Considering the pro-
cessing overhead incurred on the routers, in this paper, we
assume that only a subset of the routers (i.e. high end more
powerful routers) have the agent functionality in the net-
work. This is in contrast to [3], in which all the routers have
the agent functionality.

Given a large number of reliable multicast groups in a net-
work, one important task is to make an intelligent selection
of agent nodes to be activated for a given reliable multicast
group. Activating all the agent nodes is an obvious solution,



but the overheads, at each agent router, due to additional
processing could slow down the system. Moreover, nodes
with high degree could become potential hot spots when
compared to nodes with relatively low degree. One impor-
tant selection criteria that we use in this paper is to consider
a notion of load balancing in identifying the agent locations
among a number of alternatives. Without such considera-
tion, the performance of the routers having excessive agent
load may degrade and these routers may become potential
traffic hot spots.

1.1 Problem Formulation

Throughout this paper, by “agent placement” we actu-
ally mean agent activation. To prevent redundant NAKs
reaching the sender, we propose placing (activating) NAK-
suppressing agents at certain nodes so that all but one NAK
gets suppressed. This certainly reduces the number of NAKs
received by the sender. The functionality of a NAK-suppres-
sing agent is that of suppressing redundant NAKs, thus al-
lowing only one NAK to pass through.

We define the “load” on an agent to be the number of
NAKSs it suppresses. Ideally, we would want to activate
agents at nodes such that the load on all agents are almost
the same. A node, whose agent is agent is activated, is over-
loaded, if it suppresses more than, say, I, NAKs. The load
at an overloaded node can be reduced by activating agents
at nodes below that node in the multicast tree, thereby di-
rectly reducing the number of NAKs passing through that
node.

In this paper, we consider the efficient way to activate
agents on multicast trees, where the leaf nodes of a tree are
the multicast group receivers and the internal nodes are the
routers. In general, not all the routers in the network have
same capabilities. Some routers are very powerful, capa-
ble of making major decisions during catastrophic failures,
while others just route traffic. Thus, we classify routers
into two kinds: (i) active (special) routers and (ii) passive
routers. Active routers are the ones that have high pro-
cessing capabilities, huge buffers and important decision-
making algorithms. Passive are the ones with simple config-
urations whose sole purpose is to transfer (route) the traffic.
Since agent functionality typically require reasonable buffer
space and processing capabilities, we restrict the placement
of agent modules to active routers only, i.e., agents are avail-
able for activation only on active routers. This is in contrast
to the work by Daescu et al. [3], in which agents modules
are available on all routers. Unlike [3], we consider a more
realistic model in which agents are available only on a subset
of routers.

In what follows, we present the formal definition of the
two agent activation problems discussed in this paper: (i)
the load-balanced agent activation problem (LBAAP) and
(ii) the budgeted agent activation problem (BAAP).

LBAAP: Given a multicast tree T rooted at node r,
where r is the multicast source node (sender). The leaves of
T are the multicast group receivers and the internal nodes
are the routers. Under this setting, given a load bound L,
the load-balanced agent activation problem asks for the ac-
tivation of minimum number of agents at active routers such
that no agent handles a load more than L.

BAAP: Given a multicast tree T rooted at node r, where
r is the the multicast source node (sender). The leaves of T'
are the multicast group receivers and the internal nodes are

the routers. Given K agents, the budgeted agent activation
problem asks for the activation of K agents at active routers
such that the maximum load L on an agent is minimized.
Note that, minimizing the maximum load on an agent is
same as that of balancing the load among the K agents.

Throughout this paper, we assume that the multicast tree
topologies are known beforehand, at least at the intra-domain
level. Several tools for discovering multicast tree topolo-
gies that span multiple domains in the Internet have been
proposed in recent years (see e.g., [4]). Normally, network
providers (ISPs) have enough information about the multi-
cast tree topologies within their domain. If the multicast
tree spans several domains, our algorithms can be run lo-
cally at the intra-domain level for the portion of the multi-
cast tree that spans that particular domain. In this way, for
trees spanning multiple domains, our algorithm can be used
at each level.

1.2 Redated Work

Load balanced agent location (or placement/activation)
problem resembles two well-known graph theoretic prob-
lems: the k-median problem and the facility location prob-
lem. Given a connected undirected graph with n nodes,
the k-median problem is to select k nodes as service centers
that will minimize the sum of the costs (i.e. distances) of all
other nodes (customers) to their respective nearest service
center among the k selected service centers. In [17], Tamir
studies the k-median problem on trees and gives an opti-
mal algorithm with a running time of O(kn?). Li et al. [11]
use a similar approach to optimally place web proxies on
a tree network architecture with a web server at the root
of the tree. Their main objective is to minimize the over-
all latency in serving client requests from the leaves of the
tree. In [14], Qiu et al. study the same problem on a graph
topology and propose various heuristics. In [10], Krishnan
et al. study the problem of optimal placement of network
(web) caches. Their goal is to minimize the overall flow or
the average delay by placing a given number of caches in the
network. In [15], Shah et al. deal with the k-median prob-
lem in the context of content-based multicast. They define
a filter placement problem as a version of k-median prob-
lem and provide two algorithms for optimal filter placement
with the objectives of minimizing mean total network band-
width utilization and mean information delivery delay. In
addition, a significant amount of study has been done on the
placement of agents in the context of reliable multicast [5,
8, 12]. The main objective of these works is to reduce the
number of retransmissions, latency and resource utilization.

The concept of placing k agents on a graph with the goal
of load balancing has been addressed in the context of fa-
cility location problems [7]. Facility location problem on
graphs is similar to k-median problem, except that there is
an additional cost associated in opening a facility node. In
[6], Guha et al. introduced the Load Balanced Facility Lo-
cation problem on graphs wherein the constraint of having a
minimum load on facility nodes is placed on the original def-
inition of the problem. They prove that this version of the
problem is NP-Complete and present a constant factor ap-
proximation algorithm for it. In [9], Jothi and Raghavachari
study the placement of repair servers in a network for sup-
porting reliable multicast application. However, their goal
is to statically identify a number of nodes/routers in the
network such that they will be used by most of the multi-



cast connections in the network. In contrast, in our work,
we consider the multicast tree topologies of the currently
existing reliable multicast sessions and activate a subset of
agents in the network dynamically.

In addition to reliable multicast, there are other multi-
cast applications that use agent support from within the
network. In [15], Shah et al. use active filtering services
in the network to improve bandwidth usage efficiency in the
context of content based multicast; and in [1, 2], the authors
use active network agents to provide support for a group of
multicast services including feedback aggregation and sup-
pression, subcasting, and directed multicast.

1.3 Our Contributions

In this paper, we study two NAK-suppressing agent acti-
vation problems: (i) the LBAAP and (ii) the BAAP. Both
these problems are generalized versions of the respective
problems introduced by Daescu et al. [3]. In [3], all nodes
have agent functionality. In our work, we consider the re-
alistic model, in which agents functionality is available only
on a subset of routers. In other words, problems considered
in [3] are the special cases of the respective problems stud-
ied in this paper. For both LBAAP and BAAP, we present
efficient algorithms for the optimal activation of agents on
a multicast tree.

2. AGENT ACTIVATION PROBLEM ON A
SINGLE MULTICAST TREE

In this section we present efficient algorithms for the agent
activation problem on a single multicast tree. A typical ap-
plication scenario for this case is as follows. An ISP offers
a number of value-added network services including NAK
suppression for reliable multicast application, to his/her cus-
tomers. Based on the type(s) of service requested by the
customer, the ISP usually charges a fixed fee based on the
number of services requested or a variable fee based on the
quality of service among others. The first scenario corre-
sponds to that of LBAAP, where the [SP charges a fixed fee
to provide NAK suppression service to its reliable multicast
customers. Under this fixed fee model, ISPs would naturally
want to provide the service in an efficient (cost-saving) way.
This directly translates to smart selection of agent locations
such that the number of agents used to provide the desired
service is as small as possible. The fewer the number of
agents, the cheaper and better it is for the [SPs.

The second scenario where the ISP charges the multicast
service user based on the number of agents corresponds to
the BAAP problem. Under this model, the service user in-
forms the number of agents that he/she wants for his/her
multicast service. This usually depends on the amount of
money that the user can afford to spend. Under the budget
constraints, the user typically wants the best service possi-
ble, i.e. most effective NAK suppression.

When an ISP receives a request for reliable multicast
agent support task, it will dynamically discover the mul-
ticast tree topology in the network and then run one of the
above algorithms to identify the agent nodes at which the
agent functionality needs to be activated to serve the re-
quest. In order to accommodate the changes in the un-
derlying multicast tree topology, the ISP will periodically
collect the tree topology and invoke the algorithm to up-
date the agents. As said earlier, several tools for discovering

multicast tree topologies that span multiple domains in the
Internet have been proposed in recent years (see e.g., [4]).
If the multicast tree spans several domains, our algorithms
can be run locally at the intra-domain level for the portion
of the multicast tree that spans that particular domain. In
this way, for trees spanning multiple domains, our algorithm
can be used at each level.

21 ThelLBAAP

First we consider the Load Balanced Agent Activation
Problem (LBAAP) on mulitcast trees. The input is a mul-
ticast tree T rooted at r. Root r of T represents the source
or the sender of the multicast tree. The leaves of T are the
multicast group receivers and internal nodes are the routers.
Routers are classified into active and passive routers. Un-
like in [3], agents modules are available only only at active
routers. Each leaf node v; has a weight of w(vz) that rep-
resents the number of receivers located at that leaf node (1
if the node is a single system, and a higher value if it is
a gateway to a network). Let T, be the subtree rooted at
node u in 7. The weight of an internal node u, w(u), is
defined to be the sum of the weights of all leaves in T,,. If
an agent at an internal node u is activated, then its load
is denoted by Ild(u). The load at an internal node, whose
agent is activated, is the maximum number of NAK mes-
sages processed by that node in the event of a message loss
or a failure. Since node u, whose agent is activated, replaces
NAK messages generated within 7, by a single NAK mes-
sage, activating an agent at u has the effect of replacing T
by a single node whose weight is 1. Since the root of the
tree could potentially receive many such NAKs, we safely
assume that an agent at the root (or the active node con-
nected to the root)is activated. Ideally, we would like the
loads on the nodes, whose agents agents are activated, to be
as balanced as possible.

In LBAAP, we are given a load constraint L, where L
denotes the maximum load that an agent can handle, and
we are asked to find the minimum number of agents at ac-
tive routers that needs to be activated such that each node,
whose agent is activated, has a load of at most L. We show
that this problem is efficiently solvable by designing an al-
gorithm that finds an optimal activation of the agents in
quadratic time. We define “degree” of an internal node to
be the number of children it has. In the calculation of de-
gree, a child that is an internal node counts as 1, while a
child that is a leaf v; counts as w(v;), its weight. We can
safely assume that the degree of each internal node is at
most L. If the degree of each internal node exceeds L, the
problem is infeasible for the given load constraint L, i.e.,
even activating the agent at every node will not provide a
feasible solution.

Recall that agents are available only on active nodes (rou-
ters). Consider an optimal activation of agents with max-
imum load L. In an optimal solution, let u be an active
node whose agent is activated, and let ¢ be u’s immediate
ancestor whose agent is also activated (see Fig. 1). Then,
de-activating the agent at u will cause the load at g to exceed
L. Otherwise, the solution we started with is not optimal.
We call q as the immediate active ancestor of u, and all ac-
tive nodes that are descendants of ¢ as the “cousins” of u.
In Fig. 1, p, s and ¢ are cousins of u.

We first show a canonical activation of agents, and then
show how to find such a solution in quadratic time. First,



we move the agents as high as possible without violating
the load constraint. In other words, if an agent at node u
is activated, then it must be the case that if we de-activate
the agent at u and activate the agent at u’s immediate an-
cestor node p, which is an active node, then the load at that
agent must exceed L. Otherwise, we can perform such a
transformation and obtain another solution which uses the
same number of agents. Second, we de-activate agents at
active nodes of smaller weight and activate the agents at
their respective active cousin nodes of higher weight (but
at most L). In other words, if we activate the agent at an
active node u, but not the agent at one of its cousin s, then
w(u) > w(s). We now show that there is always an optimal
activation of agents that satisfies the above conditions.

LEMMA 1. Let T' be a multicast tree with root r, and let
L be the maximum load for any agent on T. Consider a
meimemum number of agents that need to be activated on T
to keep the maximum load to be less than or equal to L.
Then, there s an optimal solution such that the following
two conditions are satisfied:

1. If the agent at node u is de-activated and the agent at
u’s immediale active ancestor p is activated, then the
load on the agent at p is more than L.

2. If an agent at active node u is activated, but not the
agent at one of ils cousins s, then w(u) > w(s).

ProoOF. By “moving an agent up in the tree,” we mean
de-activating an agent at node u and activating the agent at
u’s immediate active ancestor node. We show that a given
solution can be modified to satisfy the above two conditions
without exceeding load L. Move an agent up in the tree if
the resulting configuration is also feasible, i.e., each agent
has a maximum load of L. Repeat this step until no agent
can be moved up any further. This configuration of the
agents satisfies condition 1 of the lemma. We now move
an agent from an active node s to its active cousin node
u if w(s) < w(u) < L. It is easy to verify that such a
move generates another feasible solution, since the load on
other agents either stays the same or decreases. In addition,
condition 1 continues to be true after the move. Again, we
repeat this step until condition 2 is satisfied. [

As an example consider the multicast tree in Figure 1. In
this figure, node p has three descendants including ¢, s, and
u with weights w(s), w(t) < w(u) < L. On the other hand,
w(p) = w(s)+w(t)+w(u)+w(x) > L. Therefore, according
to the above lemma, we activate the agent at active node
u which is the child of p with the largest weight within the
load bound L.

Having shown that there is a canonical optimal activation
of the agents, we now show how to find one in quadratic
time. We process the tree bottom-up and find a deepest
node p whose weight is more than L. We activate the agent
at an active node u, a descendant of p whose weight is more
than any other active descendant of p, i.e., an internal active
node of maximum weight among all such nodes that are
descendants of p. Set the weight at node u to 1, which has
the effect of replacing 7% by a single node with a weight of
1. The above step is repeated until the remaining tree has
load at most L, which is handled by the agent at tree’s root.
The correctness of the algorithm follows from Lemma 1.

The following pseudo-code shows the algorithm. A global
variable nagents counts the number of agents activated by

Figure 1: A sample scenario for LBAAP with
w(s),w(t), w(z) < w(u) < L and w(p) > L

the algorithm. This variable is initialized to 1, correspond-
ing to the agent activated at the root. At the end of the
algorithm, we set 1d(r) := w(r). A node u at which an
agent is placed handles a load of 1d(u). For other nodes,
the algorithm sets the variable to 0.

LBAAP(T, r, L)
nagents := 1
1d(r) := Postorder(r)
return nagents

Postorder(p) /# process subtree rooted at p */
if p is a leaf node, return w(p)
else
load := 0
for each child u of p do
load := load + Postorder(u)
while load > L do
find an active descendant node u of p with
maximum weight
Activate the agent at u
nagents := nagents + 1
1d(uw) := w(w)

load := load - w(u) + 1
w(u) :=1
1d(p) := 0

w(p) := load
return w(p)

Processing each node takes linear time, since finding an
active descendant node u of p with maximum weight takes
linear time. Since there is a total of n nodes, the running
time is O(n?).

THEOREM 1. Algorithm LBAAP finds an optimal activa-
tion of agents with mazimum load L for a given multicast
tree T.

PrROOF. The proof is by induction on the number of agents
activated by the algorithm. If the total load of the tree is
less than or equal to L, then the algorithm activates the
agent at r, which is clearly optimal. Otherwise, let u be the
first node whose agent is activated by the algorithm when
processing Postorder (p), where u is an active descendant of
u. By Lemma 1, there is an optimal solution that activates



the agent at node u, since load of p is more than L, and u
is an active descendant of p with maximum load. Then, we
can replace T, by a single node with a weight of 1. By in-
duction, in this smaller tree, our algorithm finds an optimal
activation of agents. [

2.2 Budgeted Agent Activation Problem

We now consider the complementary problem, the bud-
geted agent activation problem (BAAP). Given a multicast
tree T' and K agents, find K nodes whose agents needs to
activated to achieve load balancing. Load balancing in this
context is defined as minimizing the maximum load L on
a router. We show that this problem can be solved using
the LBAAP algorithm as a subroutine with the parametric
search technique. Suppose we “guess” the value of L. We
solve LBAAP with this value of L and find the minimum
number of agents N, needed to keep the load of any router
under L. If Ny, > K, then our guess of L is too small, and we
have to increase it. It is easy to show that N, is a monotonic
function of L. If we find that value of L for which N; < K,
but Nr_1 > K, then L is the optimal load for the given
K agents, and the LBAAP algorithm finds the nodes in the
tree whose agents needs to be activated. The algorithm can
be implemented efficiently using binary search to find the
right value of L. Since binary search is used, there are at
most log n calls made to LBAAP algorithm, which makes
the running time of BAAP algorithm to be O(n? logn).

BAAP(T, r, K)
LMin := max degree of any node in T
nagents := LBAAP(T, r, LMin)
if nagents <= K then
return LMin
LMax := total load of all nodes in T
while LMin < LMax - 1 do {
LMid := (LMin + LMax)/2
nagents := LBAAP(T, r, LMid)
if nagents > K then
LMin := LMid
else
LMax := LMid
return LMax

THEOREM 2. Algorithm BAAP finds the smallest load for
which K agents are sufficient.

PRrOOF. There is no feasible solution for the problem with
load smaller than the initial value of LMin, the degree of the
tree. If the number of agents needed to keep the load under
LMin is less than or equal to K, then the algorithm returns
this smallest load as the solution. Otherwise, it maintains
the invariant that the optimal load is between LMin and LMax
and finds the optimal load using binary search. [

3. CONCLUSION

In this paper, we focused on the activation of NAK-suppr-
essing agents on a multicast tree so as to alleviate the feed-
back implosion problem. We considered the generalized
variations of the agent activation problem considered in [3],
namely the LBAAP and the BAAP, and presented efficient
algorithms for optimal activation of agents. We are cur-
rently investigating the complexity and algorithms for for
the multi-tree version of the problems considered in this pa-
per.
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